設(shè)定函數(shù)f(x)=
a
3
x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的兩個根分別為1,4.
(Ⅰ)當(dāng)a=3且曲線y=f(x)過原點時,求f(x)的解析式;
(Ⅱ)若f(x)在(-∞,+∞)無極值點,求a的取值范圍.
由得f′(x)=ax2+2bx+c
因為f′(x)-9x=ax2+2bx+c-9x=0的兩個根分別為1,4,所以
a+2b+c-9=0
16a+8b+c-36=0
(*)
(Ⅰ)當(dāng)a=3時,又由(*)式得
2b+c-6=0
8b+c+12=0

解得b=-3,c=12
又因為曲線y=f(x)過原點,所以d=0
故f(x)=x3-3x2+12x
(Ⅱ)由于a>0,所以“f(x)=
a
3
x3+bx2+cx+d
在(-∞,+∞)內(nèi)無極值點”等價于“f′(x)=ax2+2bx+c≥0在(-∞,+∞)內(nèi)恒成立”.
由(*)式得2b=9-5a,c=4a.
又△=(2b)2-4ac=9(a-1)(a-9)
a>0
△=9(a-1)(a-9)≤0
得a∈[1,9]
即a的取值范圍[1,9]
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=exlnx在點(1,f(1))處的切線方程是( 。
A.y=2e(x-1)B.y=ex-1C.y=e(x-1)D.y=x-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若點P是曲線y=x2-lnx上一點,且在點P處的切線與直線y=x-2平行,則點P的橫坐標(biāo)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
1
2
ax2
+2lnx,曲線y=f(x)在x=1處的切線斜率為4.
(1)求a的值及切線方程;
(2)點P(x,y)為曲線y=f′(x)上一點,求y-x的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)y=xlnx
(1)求這個函數(shù)的導(dǎo)數(shù);
(2)求這個函數(shù)的圖象在點x=1處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

方程x3-3x-m=0有且只有兩個不同的實根,則實數(shù)m=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖為函數(shù)f(x)=
x
(0<x<1)的圖象,其在點M(t,f(t))處的切線為l,l與y軸和直線y=1分別交于點P、Q,點N(0,1),若△PQN的面積為b時的點M恰好有兩個,則b的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線y=f(x)在與x軸交點處的切線為y=x-1,函數(shù)f(x)的導(dǎo)數(shù)y=f′(x)的圖象關(guān)于直線x=2對稱,求函數(shù)f(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=
x2+2x+a
x
,x∈[1,+∞).
(1)當(dāng)a=
1
2
時,判斷證明f(x)的單調(diào)性并求f(x)的最小值;
(2)若對任意x∈[1,+∞),f(x)>1恒成立,試求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案