已知△ABC中,∠C=60°,c=2,則a+b的取值范圍為( 。
分析:先根據(jù)正弦定理求出2R并表示出a+b;再結(jié)合輔助角公式以及角A的氛圍和正弦函數(shù)的單調(diào)性即可得到答案.
解答:解:∵
a
sinA
=
b
sinB
=
c
sinC
=2R
∴2R=
c
sinC
=
2
sin60°
=
4
3
3

∴a+b=2R(sinA+sinB)=
4
3
3
[sinA+sin(120°-A)]=
4
3
3
×(
3
2
sinA+
3
2
cosA)
=4sin(A+
π
6

π
6
<A+
π
6
6
⇒2<4sin(A+
π
6
)≤1;
∴a+b∈(2,4].
故選:A.
點(diǎn)評(píng):本題主要考查正弦定理的應(yīng)用以及輔助角公式的應(yīng)用.解決這類問題的關(guān)鍵在于對(duì)公式的熟練掌握以及靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠C=90°,直線PA⊥平面ABC,若AB=5,AC=2,則點(diǎn)B到平面PAC的距離為( 。
A、
13
B、
21
C、2
6
D、5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,c-b=1,cosA=
12
13
,S△ABC=30,則a=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•朝陽區(qū)一模)已知△ABC中,∠C=90°,AC=3,BC=4.一個(gè)圓心為M,半徑為
1
4
的圓在△ABC內(nèi),沿著△ABC的邊滾動(dòng)一周回到原位.在滾動(dòng)過程中,圓M至少與△ABC的一邊相切,則點(diǎn)M到△ABC頂點(diǎn)的最短距離是
2
4
2
4
,點(diǎn)M的運(yùn)動(dòng)軌跡的周長是
9
9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,∠C=
π
2
.設(shè)∠CBA=θ,BC=a,它的內(nèi)接正方形DEFG的一邊EF在斜邊AB上,D、G分別在AC、BC上.假設(shè)△ABC的面積為S,正方形DEFG的面積為T.用a,θ表示△ABC的面積S和正方形DEFG的面積T;
設(shè)f(θ)=
T
S
,試求f(θ)的最大值P,并判斷此時(shí)△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,c=
5
,C=
π
3
,a+b=
2
ab,則△ABC的面積為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案