設數(shù)列{an}中,若an+1=an+an+2(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.已知數(shù)列{bn}為“凸數(shù)列”,且b1=1,b2=-2,則數(shù)列{bn}前2012項和等于
-1
-1
分析:由數(shù)列{bn}為“凸數(shù)列”,b1=1,b2=-2,推導出數(shù)列{bn}是以6為周期的周期數(shù)列,b1+b2+b3+b4+b5+b6=0,由此能求出數(shù)列{bn}前2012項和.
解答:解:∵數(shù)列{bn}為“凸數(shù)列”,
∴bn+1=bn+bn+2(n∈N*),
∵b1=1,b2=-2,
∴-2=1+b3,解得b3=-3,
-3=-2+b4,解得b4=-1,
-1=-3+b5,解得b5=2,
2=-1+b6,解得b6=3,
3=2+b7,解得b7=1,
1=3+b8,解得b8=-2.

∴數(shù)列{bn}是以6為周期的周期數(shù)列,
∵b1+b2+b3+b4+b5+b6=1-2-3-1+2+3=0,2012=6×335+2,
∴數(shù)列{bn}前2012項和S2012=335×0+b1+b2=1-2=-1.
故答案為:-1.
點評:本題考查數(shù)列的前期012項和的求法,解題時關鍵是推導出數(shù)列{bn}是以6為周期的周期數(shù)列,b1+b2+b3+b4+b5+b6=0,由此能求出數(shù)列{bn}前2012項和.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+3=-an,n∈N*;
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前2010項和S2010

查看答案和解析>>

科目:高中數(shù)學 來源:2010年高考數(shù)學模擬試卷3(文科)(解析版) 題型:解答題

設數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源:高考數(shù)學最后沖刺必讀題解析30講(26)(解析版) 題型:解答題

設數(shù)列{an}中,若an+1=an+an+2,(n∈N*),則稱數(shù)列{an}為“凸數(shù)列”.
(1)設數(shù)列{an}為“凸數(shù)列”,若a1=1,a2=-2,試寫出該數(shù)列的前6項,并求出該6項之和;
(2)在“凸數(shù)列”{an}中,求證:an+6=an,n∈N*;
(3)設a1=a,a2=b,若數(shù)列{an}為“凸數(shù)列”,求數(shù)列前n項和Sn

查看答案和解析>>

同步練習冊答案