設(shè)橢圓的離心率,右焦點到直線的距離

為坐標原點。  

(I)求橢圓的方程;

(II)過點作兩條互相垂直的射線,與橢圓分別交于兩點,證明點到直

的距離為定值,并求弦長度的最小值

 

【答案】

(I)橢圓C的方程為

(II)弦AB的長度的最小值是

【解析】.解:(I)由

由右焦點到直線的距離為

得:       解得

所以橢圓C的方程為                        …………4分

   (II)設(shè),K^S*5U

直線AB的方程為

與橢圓聯(lián)立消去y得

 

整理得    所以O(shè)到直線AB的距離

                           …………8分

,  當且僅當OA=OB時取“=”號。

即弦AB的長度的最小值是                        …………13分

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

如圖,在直角坐標系xOy中,已知橢圓的離心率e=

左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在直角坐標系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年寧夏石嘴山市平羅中學高二(上)期中數(shù)學試卷(解析版) 題型:解答題

在直角坐標系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1,F(xiàn)2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.
(1)求橢圓C的方程;
(2)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l 的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案