相關(guān)習(xí)題
 0  103058  103066  103072  103076  103082  103084  103088  103094  103096  103102  103108  103112  103114  103118  103124  103126  103132  103136  103138  103142  103144  103148  103150  103152  103153  103154  103156  103157  103158  103160  103162  103166  103168  103172  103174  103178  103184  103186  103192  103196  103198  103202  103208  103214  103216  103222  103226  103228  103234  103238  103244  103252  266669 

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

直線ρcosθ=2截圓(θ為參數(shù))所得的弦長為   

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

(不等式選講選做題)|x-3|+|x-5|≥4的解集是   

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖⊙0的直徑AD=2,四邊形ABCD內(nèi)接于⊙0,直線MN切⊙0于點B,∠MBA=30°,則AB的長為   

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

在銳角三角形ABC中,BC=1,,
(1)求AC的值;
(2)求sin(A-B)的值.

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市政府為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理,為此市政府首先采用抽樣調(diào)查的方法獲得了n位居民某年的月均用水量(單位:噸).根據(jù)所得的n個數(shù)據(jù)按照區(qū)間[0,0.5),[0.5,1),[1,1.5),[1.5,2),[2,2.5),[2.5,3),[3,3.5),[3.5,4),[4,4.5]進行分組,得到頻率分布直方圖如圖
(1)若已知n位居民中月均用水量小于1噸的人數(shù)是12,求n位居民中月均用水量分別在區(qū)間[2,2.5)和[2.5,3)內(nèi)的人數(shù);
(2)在該市居民中隨意抽取10位,求至少有2位居民月均用水量在區(qū)間[2,2.5)或[2.5,3)內(nèi)的概率.(精確到0.01.參考數(shù)據(jù):0.619≈0.012,0.6110≈0.0071)

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

如圖,在直三棱柱ABC-A1B1C1中,AB⊥AC,AB=AC=1,AA1=2,D、E分別是BB1、CC1的中點,M是DE的中點.
(1)求證:DE⊥平面AMA1;
(2)求三棱錐A1-ADE的體積;
(3)求二面角A-DA1-E的余弦值.

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知橢圓C:=1(a>b>0)的離心率為,短軸一個端點到右焦點的距離為3.
(1)求橢圓C的方程;
(2)過橢圓C上的動點P引圓O:x2+y2=b2的兩條切線PA、PB,A、B分別為切點,試探究橢圓C上是否存在點P,由點P向圓O所引的兩條切線互相垂直?若存在,請求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知數(shù)列{an}的前n項和是Sn,滿足Sn=2an-1.
(1)求數(shù)列的通項an及前n項和Sn;
(2)若數(shù)列{bn}滿足,求數(shù)列{bn}的前n項和Tn
(3)若對任意的x∈R,恒有Tn<x2-ax+2成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源:2010年廣東省廣州市海珠區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)當x≤0時,函數(shù)f(x)在(-1,f(-1))處的切線方程為x-3y+1=0,求m的值;
(2)當x>0時,設(shè)f(x)+1的反函數(shù)為g-1(x)(g-1(x)的定義域即是f(x)+1的值域).證明:函數(shù)在區(qū)間(e,3)內(nèi)無零點,在區(qū)間(3,e2)內(nèi)有且只有一個零點;
(3)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來源:2010年廣東省肇慶市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知函數(shù)y=2cos(ωx+φ)(ω>0)的最小正周期為π,那么ω=( )
A.
B.
C.1
D.2

查看答案和解析>>

同步練習(xí)冊答案