【題目】如圖,正方形ABCD中,AD=12,G是BC的中點(diǎn).將△ABG沿AG對(duì)折至△AFG,延長(zhǎng)GF交DC于點(diǎn)E,則DE的長(zhǎng)是_____.
【答案】4
【解析】
如圖,連接AE,根據(jù)翻折變換的性質(zhì)和正方形的性質(zhì)可證Rt△AFE≌Rt△ADE;在直角△ECG中,設(shè)DE=FE=x,然后根據(jù)勾股定理計(jì)算即可求出DE的長(zhǎng).
解:如圖,連接AE,
∵AB=AD=AF,∠D=∠AFE=90°,
在Rt△AFE和Rt△ADE中,
∵
∴Rt△AFE≌Rt△ADE,
∴EF=DE.
設(shè)DE=FE=x,則EC=12-x.
∵G為BC中點(diǎn),BC=12,
∴CG=6,
在Rt△ECG中,根據(jù)勾股定理,得:(12-x)2+36=(x+6)2,
解得,x=4,
則DE=4.
故答案為4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為的正方形中,為的中點(diǎn),連接交于,連接,過(guò)作交的延長(zhǎng)線于,則的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),大孔的水面寬度為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,CE⊥AD于點(diǎn)E,且CB=CE,點(diǎn)F為CD邊上的一點(diǎn),CB=CF,連接BF交CE于點(diǎn)G.
(1)若∠D=60°,CF=2,求CG的長(zhǎng)度;
(2)求證:AB=ED+CG.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“綜合與實(shí)踐”學(xué)習(xí)活動(dòng)準(zhǔn)備制作一組三角形,記這些三角形分別為,用記號(hào)表示一個(gè)滿(mǎn)足條件的三角形,如(2,4,4)表示邊長(zhǎng)分別為2,4,4個(gè)單位長(zhǎng)度的一個(gè)三角形.
(1)若這些三角形三邊的長(zhǎng)度為大于0且小于3的整數(shù)個(gè)單位長(zhǎng)度,請(qǐng)用記號(hào)寫(xiě)出所有滿(mǎn)足條件的三角形;
(2)如圖,是的中線,線段的長(zhǎng)度分別為2個(gè),6個(gè)單位長(zhǎng)度,且線段的長(zhǎng)度為整數(shù)個(gè)單位長(zhǎng)度,過(guò)點(diǎn)作交的延長(zhǎng)線于點(diǎn).
①求的長(zhǎng)度;
②請(qǐng)直接用記號(hào)表示.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E、交AC于D,連接BD.
(1)若∠A=40°,求∠DBC的度數(shù).
(2)若△BCD的周長(zhǎng)為16cm,△ABC的周長(zhǎng)為26cm,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無(wú)滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過(guò)2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系xOy中,點(diǎn)A(2,3),B(3,0),C(m,n)其中m>0,若以O,A,B,C為頂點(diǎn)的四邊形是平行四邊形,則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在矩形ABCD中,AD=4,點(diǎn)E在邊AD上,連接CE,以CE為邊向右上方作正方形CEFG,作FH⊥AD,且垂足H在邊AD上,連接AF.
(1)求證:FH=ED;
(2)設(shè)AE=x,是否存在某個(gè)x的值,使得△AEF的面積為3?若存在,求出x的值,若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com