科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:填空題
設(shè)是已知平面上所有向量的集合,對于映射,記的象為。若映射滿足:對所有及任意實數(shù)都有,則稱為平面上的線性變換,F(xiàn)有下列命題:
①設(shè)是平面上的線性變換,,則
②若是平面上的單位向量,對,則是平面上的線性變換;
③對,則是平面上的線性變換;
④設(shè)是平面上的線性變換,,則對任意實數(shù)均有。
其中的真命題是 (寫出所有真命題的編號)
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
在銳角中,角所對的邊分別為,已知
(1)求角的大。唬2)若,求的取值范圍.
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
在數(shù)列{an}中,a1=1,當(dāng)n≥2時,an,Sn,Sn-成等比數(shù)列.
(1)求a2,a3,a4,并推出an的表達式;(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;
(3)求數(shù)列{an}前n項的和.
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
袋中裝有13個紅球和個白球,這些紅球和白球除了顏色不同之外,其余都相同,從袋中同時取兩個球.
(1)若取出的是2個紅球的概率等于取出的是一紅一白兩個球的概率的3倍,試求的值;
(2) 某公司的某部門有21位職員,公司將進行抽獎活動,在(1)的條件下,規(guī)定:每個職員都從袋中同時取兩個球,然后放回袋中,搖勻再給別人抽獎,若某人取出的兩個球是一紅一白時,則中獎(獎金1000元);否則,不中獎(也發(fā)鼓勵獎金100元).試求此公司在這次抽獎活動中所發(fā)獎金總額的期望值.
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
如圖(1)在等腰中,D,E,F(xiàn)分別是AB,AC和BC邊的中點,,
現(xiàn)將沿CD翻折成直二面角A-DC-B.(如圖(2))
(I)試判斷直線AB與平面DEF的位置關(guān)系,
并說明理由;(II).求二面角E-DF-C的余弦值;
(III)在線段BC是否存在一點P,但APDE?證明你的結(jié)論.
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
設(shè)a為實數(shù),設(shè)函數(shù)的最大值為g(a)。
(Ⅰ)設(shè)t=,求t的取值范圍,并把f(x)表示為t的函數(shù)m(t)
(Ⅱ)求g(a)(Ⅲ)試求滿足的所有實數(shù)a
查看答案和解析>>
科目: 來源:2013屆江西省上饒市、德興一中等高二四校聯(lián)考數(shù)學(xué)試卷 題型:解答題
已知橢圓內(nèi)有圓,如果圓的切線與橢圓交A、B兩點,且滿足(其中為坐標(biāo)原點).
(1)求證:為定值;
(2)若達到最小值,求此時的橢圓方程;
(3)在滿足條件(2)的橢圓上是否存在點P,使得從P向圓所引的兩條切線互相垂直,如果存在,求出點的坐標(biāo),如果不存在,說明理由.
查看答案和解析>>
科目: 來源:2014屆江西省上饒市等高一四校聯(lián)考數(shù)學(xué)試卷 題型:選擇題
下列結(jié)論中,正確的是
A.若實數(shù)A是a與b的等差中項,則必有;
B.若實數(shù)a,G,b滿足,則G必是a與b的等比中項;
C.若數(shù)列是常數(shù)數(shù)列 a,a,a,·····,則既是等差數(shù)列,又是等比數(shù)列;
D.若等差數(shù)列的前項和(a,b,c為實常數(shù)),則必有:c=0.
查看答案和解析>>
科目: 來源:2014屆江西省上饒市等高一四校聯(lián)考數(shù)學(xué)試卷 題型:選擇題
下列結(jié)論中:①互為相反向量的兩個向量模相等;
②若向量與是共線的向量,則點A,B,C,D必在同一條直線上;
③若,則或; ④若,則或;
其中正確結(jié)論的個數(shù)是
A.4 B. 3 C.2 D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com