相關(guān)習(xí)題
 0  130499  130507  130513  130517  130523  130525  130529  130535  130537  130543  130549  130553  130555  130559  130565  130567  130573  130577  130579  130583  130585  130589  130591  130593  130594  130595  130597  130598  130599  130601  130603  130607  130609  130613  130615  130619  130625  130627  130633  130637  130639  130643  130649  130655  130657  130663  130667  130669  130675  130679  130685  130693  266669 

科目: 來源: 題型:044

(2006安徽,22)如圖所示,F為雙曲線的右焦點,P為雙曲線C右支上一點,且位于x軸上方,M為左準線上一點,O為坐標原點.已知四邊形OFPM為平行四邊形,

(1)寫出雙曲線C的離心率eλ的關(guān)系式;

(2)λ=1時,經(jīng)過焦點F且平行于OP的直線交雙曲線于A、B兩點,若|AB|=12,求此時的雙曲線方程.

查看答案和解析>>

科目: 來源: 題型:044

(2007湖南,20)已知雙曲線的左、右焦點分別為,過點的動直線與雙曲線相交于A、B兩點.

(1)若動點M滿足(其中O為坐標原點),求點M的軌跡方程;

(2)x軸上是否存在定點C,使為常數(shù)?若存在,求出點C的坐標;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:044

(2007江西,21)設(shè)動點P到點A(1,0)B(1,0)的距離分別為,∠APB=2θ,且存在常數(shù)λ(0<λ<1),使得

(1)證明:動點P的軌跡C為雙曲線,并求出C的方程;

(2)過點B作直線交雙曲線C的右支于M、N兩點,試確定λ的范圍,使,其中點O為坐標原點.

查看答案和解析>>

科目: 來源: 題型:044

(吉林實驗中學(xué)模擬)如圖所示,已知橢圓(ab0),、分別為橢圓的左、右焦點,A為橢圓的上頂點,直線交橢圓于另一點B

(1),求橢圓的離心率;

(2)若橢圓的焦距為2,且,求橢圓的方程.

查看答案和解析>>

科目: 來源: 題型:044

(鄭州四中模擬)設(shè)P(x,y)為橢圓上任一點,(c,0)(c,0)為焦點,,

(1)求證:離心率;

(2)的值;

(3)的最值.

查看答案和解析>>

科目: 來源: 題型:044

(2007北京海淀模擬)設(shè)橢圓(ab0)的焦點分別為(1,0)、(1,0),右準線lx軸于點A,且

(1)試求橢圓的方程;

(2)、分別作互相垂直的兩直線與橢圓分別交于D、E、M、N四點(如圖所示),試求四邊形DMEN面積的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:044

(2006重慶模擬)已知橢圓C的方程為(ab0),分別是左右兩個焦點,A為右頂點,l為左準線.過的直線與橢圓相交于P、Q兩點,且滿足條件(c為半焦距).過點PPTlT為垂足.

(1)時,求證:

(2)當離心率時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:044

(2006江西,21)如圖所示,橢圓(ab0)的右焦點為F(c,0),過點F的一動直線m繞點F轉(zhuǎn)動,并且交橢圓于A、B兩點,P為線段AB的中點.

(1)求點P的軌跡H的方程;

(2)若在Q的方程中,令,.確定θ的值,使原點距橢圓Q的右準線l最遠.此時,設(shè)lx軸交點為D,當直線m繞點F轉(zhuǎn)動到什么位置時,△ABD的面積最大?

查看答案和解析>>

科目: 來源: 題型:044

(2007陜西,21)已知橢圓C(ab0)的離心率為,短軸一個端點到右焦點的距離為

(1)求橢圓C的方程;

(2)設(shè)直線l與橢圓C交于A、B兩點,坐標原點O到直線l的距離為,求△AOB面積的最大值.

查看答案和解析>>

科目: 來源: 題型:044

(2006湖北,20)設(shè)A、B分別為橢圓(a、b0)的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準線.

(1)求橢圓的方程;

(2)設(shè)P為右準線上不同于點(4,0)的任意一點,若直線AP、BP分別與橢圓相交于異于A、B的點M、N,證明點B在以MN為直徑的圓內(nèi)(此題不要求在答題卡上畫圖)

查看答案和解析>>

同步練習(xí)冊答案