相關習題
 0  149809  149817  149823  149827  149833  149835  149839  149845  149847  149853  149859  149863  149865  149869  149875  149877  149883  149887  149889  149893  149895  149899  149901  149903  149904  149905  149907  149908  149909  149911  149913  149917  149919  149923  149925  149929  149935  149937  149943  149947  149949  149953  149959  149965  149967  149973  149977  149979  149985  149989  149995  150003  266669 

科目: 來源: 題型:解答題

某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1 000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:資金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)若建立函數(shù)yf(x)模型制定獎勵方案,試用數(shù)學語言表述該公司對獎勵函數(shù)f(x)模型的基本要求,并分析函數(shù)y+2是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用模型函數(shù)y作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

某商場對A品牌的商品進行了市場調(diào)查,預計2012年從1月起前x個月顧客對A品牌的商品的需求總量P(x)件與月份x的近似關系是:
P(x)=x(x+1)(41-2x)(x≤12且x∈N*)
(1)寫出第x月的需求量f(x)的表達式;
(2)若第x月的銷售量g(x)=
(單位:件),每件利潤q(x)元與月份x的近似關系為:q(x)=,問:該商場銷售A品牌商品,預計第幾月的月利潤達到最大值?月利潤最大值是多少?(e6≈403)

查看答案和解析>>

科目: 來源: 題型:解答題

經(jīng)市場調(diào)查,某旅游城市在過去的一個月內(nèi)(以30天計),旅游人數(shù)f(t)(萬人)與時間t(天)的函數(shù)關系近似滿足f(t)=4+,人均消費g(t)(元)與時間t(天)的函數(shù)關系近似滿足g(t)=115-|t-15|.
(1)求該城市的旅游日收益w(t)(萬元)與時間t(1≤t≤30,t∈N*)的函數(shù)關系式;
(2)求該城市旅游日收益的最小值(萬元).

查看答案和解析>>

科目: 來源: 題型:解答題

設函數(shù)f(x)=ax2bxb-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的零點;
(2)若對任意b∈R,函數(shù)f(x)恒有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知二次函數(shù)f(x)=ax2bx+1(a>0),F(x)=f(-1)=0,且對任意實數(shù)x均有f(x)≥0成立.
(1)求F(x)的表達式;
(2)當x∈[-2,2]時,g(x)=f(x)-kx是單調(diào)函數(shù),求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數(shù)f(x)=x2bxc(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(xc)2;
(2)若對滿足題設條件的任意b,c,不等式f(c)-f(b)≤M(c2b2)恒成立,求M的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

為了在夏季降溫和冬季供暖時減少能源損耗,房屋的屋頂和外墻需要建造隔熱層,某幢建筑物要建造可使用20年的隔熱層,每厘米厚的隔熱層建造成本為6萬元,該建筑物每年的能源消耗費用C(單位:萬元)與隔熱層厚度x(單位:cm)滿足關系:C(x)= (0≤x≤10),若不建隔熱層,每年能源消耗費用為8萬元.設f(x)為隔熱層建造費用與20年的能源消耗費用之和.
(1)求k的值及f(x)的表達式;
(2)隔熱層修建多厚時,總費用f(x)達到最小,并求最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

已知函數(shù)f(x)=的圖象過原點,且關于點(-1,2)成中心對稱.
(1)求函數(shù)f(x)的解析式;
(2)若數(shù)列{an}滿足a1=2,an+1f(an),試證明數(shù)列為等比數(shù)列,并求出數(shù)列{an}的通項公式.

查看答案和解析>>

科目: 來源: 題型:解答題

已知二次函數(shù)f(x)的二次項系數(shù)為a,且不等式f(x)>2x的解集為(-1,3).
(1)若函數(shù)g(x)=xf(x)在區(qū)間內(nèi)單調(diào)遞減,求a的取值范圍;
(2)當a=-1時,證明方程f(x)=2x3-1僅有一個實數(shù)根;
(3)當x∈[0,1]時,試討論|f(x)+(2a-1)x+3a+1|≤3成立的充要條件.

查看答案和解析>>

科目: 來源: 題型:解答題

某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)x千件,需另投入成本為C(x).當年產(chǎn)量不足80千件時,C(x)=x2+10x(萬元);當年產(chǎn)量不小于80千件時,C(x)=51x-1 450(萬元),每件商品售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤L(萬元)關于年產(chǎn)量x(千件)的函數(shù)解析式;
(2)當年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?

查看答案和解析>>

同步練習冊答案