相關(guān)習(xí)題
 0  168250  168258  168264  168268  168274  168276  168280  168286  168288  168294  168300  168304  168306  168310  168316  168318  168324  168328  168330  168334  168336  168340  168342  168344  168345  168346  168348  168349  168350  168352  168354  168358  168360  168364  168366  168370  168376  168378  168384  168388  168390  168394  168400  168406  168408  168414  168418  168420  168426  168430  168436  168444  266669 

科目: 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知點,圓是以為圓心,半徑為的圓,點是圓上任意一點,線段的垂直平分線和半徑所在的直線交于點.
(1)當(dāng)點在圓上運動時,求點的軌跡方程;
(2)已知,是曲線上的兩點,若曲線上存在點,滿足為坐標(biāo)原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,橢圓經(jīng)過點,其左、右頂點分別是,左、右焦點分別是、(異于、)是橢圓上的動點,連接交直線兩點,若成等比數(shù)列.

(1)求此橢圓的離心率;
(2)求證:以線段為直徑的圓過點.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知離心率為的雙曲線和離心率為的橢圓有相同的焦點,是兩曲線的一個公共點,若,則等于(     )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓的方程為,其中.
(1)求橢圓形狀最圓時的方程;
(2)若橢圓最圓時任意兩條互相垂直的切線相交于點,證明:點在一個定圓上.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知點為橢圓右焦點,圓與橢圓的一個公共點為,且直線與圓相切于點.

(1)求的值及橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)動點滿足,其中M、N是橢圓上的點,為原點,直線OM與ON的斜率之積為,求證:為定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖所示,已知A、BC是長軸長為4的橢圓E上的三點,點A是長軸的一個端點,BC過橢圓中心O,且,|BC|=2|AC|.

(1)求橢圓E的方程;
(2)在橢圓E上是否存點Q,使得?若存在,有幾個(不必求出Q點的坐標(biāo)),若不存在,請說明理由.
(3)過橢圓E上異于其頂點的任一點P,作的兩條切線,切點分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:為定值.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓()的短軸長為2,離心率為.過點M(2,0)的直線與橢圓相交于、兩點,為坐標(biāo)原點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若點關(guān)于軸的對稱點是,證明:直線恒過一定點.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓的右焦點為F,A為短軸的一個端點,且,的面積為1(其中為坐標(biāo)原點).
(1)求橢圓的方程;
(2)若CD分別是橢圓長軸的左、右端點,動點M滿足,連結(jié)CM,交橢圓于點,證明:為定值;
(3)在(2)的條件下,試問軸上是否存在異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

橢圓的方程為,離心率為,且短軸一端點和兩焦點構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點F與橢圓的一個頂點重合.
(1)求橢圓和拋物線的方程;
(2)過點F的直線交拋物線于不同兩點A,B,交y軸于點N,已知的值.
(3)直線交橢圓于不同兩點P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點),若點S滿足,判定點S是否在橢圓上,并說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,橢圓的右焦點與拋物線的焦點重合,過且于x軸垂直的直線與橢圓交于S,T,與拋物線交于C,D兩點,且

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P為橢圓上一點,若過點M(2,0)的直線與橢圓相交于不同兩點A和B,且滿足(O為坐標(biāo)原點),求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案