相關(guān)習(xí)題
 0  168315  168323  168329  168333  168339  168341  168345  168351  168353  168359  168365  168369  168371  168375  168381  168383  168389  168393  168395  168399  168401  168405  168407  168409  168410  168411  168413  168414  168415  168417  168419  168423  168425  168429  168431  168435  168441  168443  168449  168453  168455  168459  168465  168471  168473  168479  168483  168485  168491  168495  168501  168509  266669 

科目: 來源:不詳 題型:單選題

設(shè)是橢圓的兩個(gè)焦點(diǎn),點(diǎn)M在橢圓上,若△是直角三角形,則△的面積等于(  )
A.48/5B.36/5C.16D.48/5或16

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(滿分10分)(Ⅰ) 設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,求證為定值并求出此定值;
(Ⅱ)設(shè)橢圓方程的左、右頂點(diǎn)分別為,點(diǎn)M是橢圓上異于的任意一點(diǎn),設(shè)直線的斜率分別為,利用(Ⅰ)的結(jié)論直接寫出的值。(不必寫出推理過程)

查看答案和解析>>

科目: 來源:不詳 題型:單選題

橢圓的焦點(diǎn)坐標(biāo)是(  )
A.(0,)、(0,)B. (0,-1)、(0,1)
C.(-1,0)、(1,0)D.(,0)、(,0)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

已知橢圓的離心率為,且過點(diǎn)(),
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于P,Q兩點(diǎn),且以PQ為對角線的菱形的一頂點(diǎn)為(-1,0),求:△OPQ面積的最大值及此時(shí)直線的方程.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

橢圓的兩焦點(diǎn)是,則其焦距長為            ,若點(diǎn)是橢圓上一點(diǎn),且 是直角三角形,則的大小是            .

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)設(shè)橢圓與拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為原點(diǎn),從每條曲線上至少取兩個(gè)點(diǎn),將其坐標(biāo)記錄于下表中:












 
1)求,的標(biāo)準(zhǔn)方程, 并分別求出它們的離心率;
2)設(shè)直線與橢圓交于不同的兩點(diǎn),且(其中坐標(biāo)原點(diǎn)),請問是否存在這樣的直線過拋物線的焦點(diǎn)若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分13分) 設(shè)橢圓E中心在原點(diǎn),焦點(diǎn)在x軸上,短軸長為4,點(diǎn)M(2,)在橢圓上,。
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線L交橢圓E于A、B兩點(diǎn),且,求△OAB的面積的取值范圍。

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分14分)
已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,長軸長是短軸長的2倍,且經(jīng)過點(diǎn)(2,1),平行于直線軸上的截距為,設(shè)直線交橢圓于兩個(gè)不同點(diǎn)、,

(1)求橢圓方程;
(2)求證:對任意的的允許值,的內(nèi)心在定直線

查看答案和解析>>

科目: 來源:不詳 題型:單選題

已知點(diǎn)是橢圓上一點(diǎn),為橢圓的一個(gè)焦點(diǎn),且軸,焦距,則橢圓的離心率是(     )
A.B.-1C.-1D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

如圖,已知是長軸為的橢圓上三點(diǎn),點(diǎn)是長軸的一個(gè)頂點(diǎn),過橢圓中心,且.

(1)建立適當(dāng)?shù)淖鴺?biāo)系,求橢圓方程;
(2)如果橢圓上兩點(diǎn)使直線軸圍成底邊在軸上的等腰三角形,是否總存在實(shí)數(shù)使?請給出證明.

查看答案和解析>>

同步練習(xí)冊答案