相關習題
 0  170135  170143  170149  170153  170159  170161  170165  170171  170173  170179  170185  170189  170191  170195  170201  170203  170209  170213  170215  170219  170221  170225  170227  170229  170230  170231  170233  170234  170235  170237  170239  170243  170245  170249  170251  170255  170261  170263  170269  170273  170275  170279  170285  170291  170293  170299  170303  170305  170311  170315  170321  170329  266669 

科目: 來源:不詳 題型:解答題

一個口袋中裝有大小形狀完全相同的紅色球個、黃色球個、藍色球個.現(xiàn)進行從口袋中摸球的游戲:摸到紅球得分、摸到黃球得分、摸到藍球得分.若從這個口袋中隨機地摸出個球,恰有一個是黃色球的概率是
⑴求的值;⑵從口袋中隨機摸出個球,設表示所摸球的得分之和,求的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源:不詳 題型:單選題

某射手一次射擊中,擊中環(huán)、環(huán)、環(huán)的概率分別是,則這位射手在一次射擊中不夠環(huán)的概率是(  )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:填空題

下列說法:①隨機事件的概率是頻率的穩(wěn)定值,頻率是概率的近似值;②一次試驗中不同的基本事件不可能同時發(fā)生;③任意事件發(fā)生的概率總滿足;其中正確的是     ;(寫出所有正確說法的序號)

查看答案和解析>>

科目: 來源:不詳 題型:解答題

小王經(jīng)營一家面包店,每天從生產(chǎn)商處訂購一種品牌現(xiàn)烤面包出售.已知每賣出一個現(xiàn)烤面包可獲利10元,若當天賣不完,則未賣出的現(xiàn)烤面包因過期每個虧損5元.經(jīng)統(tǒng)計,得到在某月(30天)中,小王每天售出的現(xiàn)烤面包個數(shù)及天數(shù)如下表:
售出個數(shù)
10
11
12
13
14
15
天數(shù)
3
3
3
6
9
6
試依據(jù)以頻率估計概率的統(tǒng)計思想,解答下列問題:
(1)計算小王某天售出該現(xiàn)烤面包超過13個的概率;
(2)若在今后的連續(xù)5天中,售出該現(xiàn)烤面包超過13個的天數(shù)大于3天,則小王決定增加訂購量.試求小王增加訂購量的概率.
(3)若小王每天訂購14個該現(xiàn)烤面包,求其一天出售該現(xiàn)烤面包所獲利潤的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學在期末考試的數(shù)學成績,乙組記錄中有一個數(shù)字模糊,無法確認.假設這個數(shù)字具有隨機性,并在圖中以a表示.
(1)若甲、乙兩個小組的數(shù)學平均成績相同,求a的值;
(2)求乙組平均成績超過甲組平均成績的概率;
(3)當a=2時,分別從甲、乙兩組中各隨機選取一名同學,設這兩名同學成績之差的絕對值為X,求隨機變量X的分布列和數(shù)學期望,

查看答案和解析>>

科目: 來源:不詳 題型:單選題

第22屆冬季奧運會于2014年2月7日在俄羅斯索契開幕,到冰壺比賽場館服務的大學生志愿者中,有2名來自莫斯科國立大學,有4名來自圣彼得堡國立大學,現(xiàn)從這6名志愿者中隨機抽取2人,至少有1名志愿者來自莫斯科國立大學的概率是(   )
A.B.C.D.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

為了了解青少年視力情況,某市從高考體檢中隨機抽取16名學生的視力進行調查,經(jīng)醫(yī)生用對數(shù)視力表檢查得到每個學生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉)如下:

(1)若視力測試結果不低丁5.0,則稱為“好視力”,求校醫(yī)從這16人中隨機選取3人,至多有1人是“好視力”的概率;
(2)以這16人的樣本數(shù)據(jù)來估計該市所有參加高考學生的的總體數(shù)據(jù),若從該市參加高考的學生中任選3人,記表示抽到“好視力”學生的人數(shù),求的分布列及數(shù)學期望.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

(本小題滿分12分)
甲、乙兩人各進行3次射擊,甲每次擊中目標的概率為,乙每次擊中目標的概率
(1)記甲擊中目標的次數(shù)為ξ,求ξ的概率分布列及數(shù)學期望Eξ;
(2)求甲恰好比乙多擊中目標2次的概率.

查看答案和解析>>

科目: 來源:不詳 題型:解答題

實驗北校舉行運動會,組委會招墓了16名男志愿者和14名女志愿者,調查發(fā)現(xiàn),男、女志愿者中分別有10 人和6人喜愛運動,其余不喜愛.
(1)根據(jù)以上數(shù)據(jù)完成以下列聯(lián)表:

(2)根據(jù)列聯(lián)表的獨立性檢驗,有多大的把握認為性別與喜愛運動有關?
(3)從不喜愛運動的女志愿者中和喜愛運動的女志愿者中各選1人,求其中不喜愛運動的女生甲及喜愛運動的女生乙至少有一人被選取的概率.
參考公式 :(其中
 




是否有關聯(lián)
沒有關聯(lián)
90%
95%
99%
 

查看答案和解析>>

科目: 來源:不詳 題型:解答題

某校高三年級一次數(shù)學考試之后,為了解學生的數(shù)學學習情況, 隨機抽取名學生的數(shù)學成績, 制成下表所示的頻率分布表.
(1)求,的值;
(2)若從第三, 四, 五組中用分層抽樣方法抽取6名學生,并在這6名學生中隨機抽取2名與張老師面談,求第三組中至少有名學生與張老師面談的概率.
組號
 分組
頻數(shù)
頻率
第一組



第二組


 
第三組



第四組



第五組



合計


 

查看答案和解析>>

同步練習冊答案