相關(guān)習(xí)題
 0  196810  196818  196824  196828  196834  196836  196840  196846  196848  196854  196860  196864  196866  196870  196876  196878  196884  196888  196890  196894  196896  196900  196902  196904  196905  196906  196908  196909  196910  196912  196914  196918  196920  196924  196926  196930  196936  196938  196944  196948  196950  196954  196960  196966  196968  196974  196978  196980  196986  196990  196996  197004  266669 

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:填空題

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若S4=8,S8=20,則a11+a12+a13+a14=________.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:填空題

已知數(shù)列{an}為等差數(shù)列,若<-1,且它們的前n項(xiàng)和Sn有最大值,則使Sn>0的n的最大值為_(kāi)_______.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知數(shù)列{an}的各項(xiàng)均為正數(shù),前n項(xiàng)和為Sn,且滿(mǎn)足2Sn=+n-4.

(1)求證{an}為等差數(shù)列;

(2)求{an}的通項(xiàng)公式.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知等差數(shù)列{an}中,a5=12,a20=-18.

(1)求數(shù)列{an}的通項(xiàng)公式;

(2)求數(shù)列{|an|}的前n項(xiàng)和Sn.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

已知等差數(shù)列{an}的首項(xiàng)a1=1,公差d>0,且第2項(xiàng)、第5項(xiàng)、第14項(xiàng)分別為等比數(shù)列{bn}的第2項(xiàng)、第3項(xiàng)、第4項(xiàng).

(1)求數(shù)列{an},{bn}的通項(xiàng)公式;

(2)設(shè)數(shù)列{cn}對(duì)n∈N*,均有+…+=an+1成立,求c1+c2+c3+…+c2014的值.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

已知數(shù)列{an},{bn}都是公差為1的等差數(shù)列,其首項(xiàng)分別為a1,b1,且a1+b1=5,a1,b1∈N*.設(shè)cn=abn(n∈N*),則數(shù)列{cn}的前10項(xiàng)和等于(  )

A.55 B.70 C.85 D.100

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:填空題

已知數(shù)列{an}中a1=1,a2=2,當(dāng)整數(shù)n>1時(shí),Sn+1+Sn-1=2(Sn+S1)都成立,則S15=________.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-2等差數(shù)列及其前n項(xiàng)和(解析版) 題型:解答題

在數(shù)列{an}中,an+1+an=2n-44(n∈N*),a1=-23.

(1)求an;

(2)設(shè)Sn為{an}的前n項(xiàng)和,求Sn的最小值.

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

在等比數(shù)列{an}中,a1·a2·a3=27,a2+a4=30,則公比q是(  )

A.±3 B.±2 C.3 D.2

 

查看答案和解析>>

科目: 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-3等比數(shù)列及其前n項(xiàng)和(解析版) 題型:選擇題

設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn,若=3,則=(  )

A.2 B. C. D.3

 

查看答案和解析>>

同步練習(xí)冊(cè)答案