相關習題
 0  209026  209034  209040  209044  209050  209052  209056  209062  209064  209070  209076  209080  209082  209086  209092  209094  209100  209104  209106  209110  209112  209116  209118  209120  209121  209122  209124  209125  209126  209128  209130  209134  209136  209140  209142  209146  209152  209154  209160  209164  209166  209170  209176  209182  209184  209190  209194  209196  209202  209206  209212  209220  266669 

科目: 來源: 題型:

已知F1,F(xiàn)2為橢圓的焦點,點P為橢圓上任意一點,求證:過點P的切線PT平分△PF1F2在點P處的外角.

查看答案和解析>>

科目: 來源: 題型:

在一個盒子中放有大小質量相同的四個小球,標號分別為1,2,3,4,現(xiàn)從這個盒子中有放回地先后摸出兩個小球,它們的標號分別為x,y,記ξ=|x-y|.
(1)求P(ξ=1);
(2)求隨機變量ξ的分布列和數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

已知定義域為(0,+∞)的函數(shù)f(x)滿足:
(1)對任意x∈(0,+∞),恒有f(2x)=f(x)成立;
(2)當x∈(1,2]時f(x)=2-x.給出結論如下:
①對任意m∈Z,有f(2m)=0
②當x∈(2,4]時,有f(x)=4-2x;
③函數(shù)f(x)的值域為[0,1);
④方程f(x)=log3x的實根個數(shù)為3;
⑤函數(shù)f(x)-
1
2
在區(qū)間(1,+∞)上的零點由小到大組成一個數(shù)列{an}.則{an}的通項公式為an=3•2n-2
其中所有正確的結論的序號是
 

查看答案和解析>>

科目: 來源: 題型:

設d為實數(shù),d≠0且d≠-1,數(shù)列{an}中a1=d,當n≥2時,an=
C
0
n-1
d+
C
1
n-1
d2+…+
C
n-2
n-1
dn-1+
C
n-1
n-1
dn,數(shù)列{bn}對任何正整數(shù)n都有:anb1+an-1b2+an-2b3+…a2bn-1+a1bn=2n+1-n-2.
(Ⅰ)證明數(shù)列{an}為等比數(shù)列;
(Ⅱ)判斷數(shù)列{bn}是否是等差數(shù)列,若是請求出通項公式;若不是,說明理由.
(Ⅲ)若d=1,cn=
3bn-1
3bn-2
,證明:c1c2…cn
33n+1

查看答案和解析>>

科目: 來源: 題型:

如圖,四棱錐P-ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,BC=2
2
,O為BD的中點.
(Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求二面角A-PB-C的余弦值.

查看答案和解析>>

科目: 來源: 題型:

現(xiàn)有4人去旅游,旅游地點有A、B兩個地方可以選擇.但4人都不知道去哪里玩,于是決定通過擲一枚質地均勻的骰子決定自己去哪里玩,擲出能被3整除的數(shù)時去A地,擲出其他的數(shù)則去B地;
(1)求這4個人中恰好有1個人去A地的概率;
(2)求這4個人中去A地的人數(shù)大于去B地的人數(shù)的概率;
(3)用X,Y分別表示這4個人中去A、B兩地的人數(shù),記ξ=|X•Y|.求隨機變量ξ的分布列與數(shù)學期望Eξ.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=(1-x)ex-1.
(Ⅰ)求函數(shù)f(x)的最大值;
(Ⅱ)設g(x)=
f(x)
x
,證明g(x)有最大值g(t),且-2<t<-1.

查看答案和解析>>

科目: 來源: 題型:

在三棱錐A-BCD中,AB=BC=4,AD=BD=CD=2
2
,在底面BCD內作CE⊥CD,且CE=
2

(1)求證:CE∥平面ABD;
(2)如果二面角A-BD-C的大小為90°,求二面角C-AE-D的大小.

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=x+
1
x
(x∈(-∞,0)∪(0,+∞))的圖象為c1,c1關于點A(2,1)的對稱圖象為c2,c2對應的函數(shù)為g(x).
(1)求函數(shù)g(x)的解析式,并確定其定義域;
(2)若直線y=b與c2只有一個交點,求b的值,并求出交點坐標.

查看答案和解析>>

科目: 來源: 題型:

如圖,設F是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點,MN為橢圓的長軸,P為橢圓C上一點,且
|PF|
∈[2,6].
(Ⅰ)求橢圓C的方程;
(Ⅱ)設點Q(-8,0),
①求證:對于任意的割線QAB,恒有∠AFM=∠BFN;
②求三角形△ABF面積的最大值.

查看答案和解析>>

同步練習冊答案