相關習題
 0  211218  211226  211232  211236  211242  211244  211248  211254  211256  211262  211268  211272  211274  211278  211284  211286  211292  211296  211298  211302  211304  211308  211310  211312  211313  211314  211316  211317  211318  211320  211322  211326  211328  211332  211334  211338  211344  211346  211352  211356  211358  211362  211368  211374  211376  211382  211386  211388  211394  211398  211404  211412  266669 

科目: 來源: 題型:

從某校隨機抽取100名學生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:
排號分組頻數(shù)
1[0,2)6
2[2,4)8
3[4,6)17
4[6,8)22
5[8,10)25
6[10,12)12
7[12,14)6
8[14,16)2
9[16,18)2
合計100
(Ⅰ)從該校隨機選取一名學生,試估計這名學生該周課外閱讀時間少于12小時的概率;
(Ⅱ)求頻率分布直方圖中的a,b的值;
(Ⅲ)假設同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的100名學生該周課外閱讀時間的平均數(shù)在第幾組(只需寫結論)

查看答案和解析>>

科目: 來源: 題型:

如圖,已知兩條拋物線E1:y2=2p1x(p1>0)和E2:y2=2p2x(p2>0),過原點O的兩條直線l1和l2,l1與E1,E2分別交于A1、A2兩點,l2與E1、E2分別交于B1、B2兩點.
(Ⅰ)證明:A1B1∥A2B2;
(Ⅱ)過O作直線l(異于l1,l2)與E1、E2分別交于C1、C2兩點.記△A1B1C1與△A2B2C2的面積分別為S1與S2,求
S1
S2
的值.

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=2|x-1|+x-1,g(x)=16x2-8x+1.記f(x)≤1的解集為M,g(x)≤4的解集為N.
(Ⅰ)求M;
(Ⅱ)當x∈M∩N時,證明:x2f(x)+x[f(x)]2
1
4

查看答案和解析>>

科目: 來源: 題型:

設每個工作日甲、乙、丙、丁4人需使用某種設備的概率分別為0.6、0.5、0.5、0.4,各人是否需使用設備相互獨立.
(Ⅰ)求同一工作日至少3人需使用設備的概率;
(Ⅱ)X表示同一工作日需使用設備的人數(shù),求X的數(shù)學期望.

查看答案和解析>>

科目: 來源: 題型:

某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結果統(tǒng)計如下:
賠付金額(元)01000200030004000
車輛數(shù)(輛)500130100150120
(Ⅰ)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率;
(Ⅱ)在樣本車輛中,車主是新司機的占10%,在賠付金額為4000元的樣本車輛中,車主是新司機的占20%,估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目: 來源: 題型:

已知數(shù)列{an}的前n項和Sn=
n2+n
2
,n∈N*
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=2an+(-1)nan,求數(shù)列{bn}的前2n項和.

查看答案和解析>>

科目: 來源: 題型:

函數(shù)f(x)=3sin(2x+
π
6
)的部分圖象如圖所示.
(Ⅰ)寫出f(x)的最小正周期及圖中x0,y0的值;
(Ⅱ)求f(x)在區(qū)間[-
π
2
,-
π
12
]上的最大值和最小值.

查看答案和解析>>

科目: 來源: 題型:

設函數(shù)f(x)=aexlnx+
bex-1
x
,曲線y=f(x)在點(1,f(1))處得切線方程為y=e(x-1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.

查看答案和解析>>

科目: 來源: 題型:

已知橢圓C:x2+2y2=4,
(1)求橢圓C的離心率
(2)設O為原點,若點A在橢圓C上,點B在直線y=2上,且OA⊥OB,求直線AB與圓x2+y2=2的位置關系,并證明你的結論.

查看答案和解析>>

科目: 來源: 題型:

數(shù)列{an}滿足a1=1,a2=2,an+2=2an+1-an+2.
(Ⅰ)設bn=an+1-an,證明{bn}是等差數(shù)列;
(Ⅱ)求{an}的通項公式.

查看答案和解析>>

同步練習冊答案