相關(guān)習(xí)題
 0  211405  211413  211419  211423  211429  211431  211435  211441  211443  211449  211455  211459  211461  211465  211471  211473  211479  211483  211485  211489  211491  211495  211497  211499  211500  211501  211503  211504  211505  211507  211509  211513  211515  211519  211521  211525  211531  211533  211539  211543  211545  211549  211555  211561  211563  211569  211573  211575  211581  211585  211591  211599  266669 

科目: 來源: 題型:

如圖,已知AB=2c(2c為常數(shù)且c>0).以AB為直徑的圓有一內(nèi)接梯形ABCD,且AB∥CD.若橢圓以A、B為焦點(diǎn).且過C、D兩點(diǎn),則當(dāng)梯形ABCD的面積最大時(shí),橢圓的離心率為
 

查看答案和解析>>

科目: 來源: 題型:

如圖,PA為⊙O的切線,A為切點(diǎn),PBC是過點(diǎn)O的割線,PA=10,PB=5.求:
(Ⅰ)⊙O的半徑;
(Ⅱ)sin∠BAP的值.

查看答案和解析>>

科目: 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,滿足2asinA=(2b-
3
c)sinB+(2c-
3
b)sinC.
(Ⅰ)求角A的大。
(Ⅱ)若a=2,b=2
3
,求△ABC的面積.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x+lnx和g(x)=x+
a2
x

(1)求f(x)在(1,f(1))處的切線方程.
(2)當(dāng)a≠0時(shí),求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

如圖所示,一條直角走廊寬為a米.現(xiàn)有一轉(zhuǎn)動靈活的平板車,其平板面為矩形,它的寬為b(0<b<a)米.
(1)若平板車卡在直角走廊內(nèi),且∠CAB=θ,試求平板面的長l.
(2)若平板車要想順利通過直角走廊,其長度不能超過多少米?

查看答案和解析>>

科目: 來源: 題型:

已知向量
m
=(2cosx,1),
n
=(cosx,
3
sin2x),函數(shù)f(x)=
m
n
+2012
(1)化簡f(x)的解析式,求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,已知f(A)=2014,a=4,△ABC的面積為4
3
,試判定△ABC的形狀,并說明理由.

查看答案和解析>>

科目: 來源: 題型:

設(shè)a是實(shí)數(shù),函數(shù)f(x)=ax2+(a+1)x-2lnx.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)a=2時(shí),過原點(diǎn)O作曲線y=f(x)的切線,求切點(diǎn)的橫坐標(biāo);
(3)設(shè)定義在D上的函數(shù)y=g(x)在點(diǎn)P(x0,y0)處的切線方程為l:y=h(x),當(dāng)x≠x0時(shí),若
g(x)-h(x)
x-x0
<0在D內(nèi)恒成立,則稱點(diǎn)P為函數(shù)y=g(x)的“巧點(diǎn)”.當(dāng)a=-
1
4
時(shí),試問函數(shù)y=f(x)是否存在“巧點(diǎn)”?若存在,請求出“巧點(diǎn)”的橫坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=sinx(x>0),g(x)=x(x>0).
(Ⅰ)當(dāng)x∈(0,
π
2
)
時(shí),求證:f(x)<g(x);
(Ⅱ)求證:g(x)-f(x)<
1
6
x3

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=x3-3x2-9x+a
(1)對于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的取值范圍;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ex-x+m,g(x)=x3-3ax2+2bx,且函數(shù)g(x)=x3-3ax2+2bx在x=1處的切線方程為y=-1,
(1)求a,b的值;
(2)若對于任意x1∈[0,2],總存在x2∈[0,2]使得f(x1)<g(x2)成立,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案