相關(guān)習(xí)題
 0  213039  213047  213053  213057  213063  213065  213069  213075  213077  213083  213089  213093  213095  213099  213105  213107  213113  213117  213119  213123  213125  213129  213131  213133  213134  213135  213137  213138  213139  213141  213143  213147  213149  213153  213155  213159  213165  213167  213173  213177  213179  213183  213189  213195  213197  213203  213207  213209  213215  213219  213225  213233  266669 

科目: 來源: 題型:

在復(fù)平面上,復(fù)數(shù)
3
(2-i)2
對(duì)應(yīng)的點(diǎn)到原點(diǎn)的距離為
 

查看答案和解析>>

科目: 來源: 題型:

直線x-2y-2=0與圓C(x-1)2+(y-2)2=10交于A,B兩點(diǎn),則弦AB的長(zhǎng)為
 

查看答案和解析>>

科目: 來源: 題型:

設(shè)α、β是一元二次方程x2-2x+m=0的兩個(gè)虛根.若|αβ|=4,則實(shí)數(shù)m=
 

查看答案和解析>>

科目: 來源: 題型:

如圖,制圖工程師要用兩個(gè)同中心的邊長(zhǎng)均為4的正方形合成一個(gè)八角形圖形.由對(duì)稱性,圖中8個(gè)三角形都是全等的三角形,設(shè)∠AA1H1=α.
(1)試用α表示△AA1H1的面積;
(2)求八角形所覆蓋面積的最大值,并指出此時(shí)α的大。

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=cos
x
2
-2sin2(
x
4
-
π
6
)

(Ⅰ)求f(x)的最小正周期及值域;
(Ⅱ)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位長(zhǎng)度,再把圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變),得到y(tǒng)=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=
4x+m
2x
是奇函數(shù).
(1)求m的值:
(2)設(shè)g(x)=2x+1-a.若函數(shù)與g(x)的圖象至少有一個(gè)公共點(diǎn).求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

已知集合P={x丨x2≤1},M={x丨-a+2≤x≤2a-7},若P∪M=P,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

(1)已知A(-3,4),B(2,
3
),在x軸上找一點(diǎn)P,使|PA|=|PB|,并求|PA|的值;
(2)已知點(diǎn)M(x,-4)與N(2,3)間的距離為7
2
,求x的值.

查看答案和解析>>

科目: 來源: 題型:

已知對(duì)任意平面向量
AB
=(x,y),把
AB
繞其起點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)θ角得到向量
AP
=(xcosθ-ysinθ,xsinθ+ycosθ),叫做把點(diǎn)B繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)角得到點(diǎn)P.
(1)已知平面內(nèi)點(diǎn)A(1,2),點(diǎn)B(1+
2
,2-2
2
).把點(diǎn)B繞點(diǎn)A沿逆時(shí)針旋轉(zhuǎn)
π
4
后得到點(diǎn)P,求點(diǎn)P的坐標(biāo);
(2)設(shè)平面內(nèi)直線l上的每一點(diǎn)繞坐標(biāo)原點(diǎn)沿逆時(shí)針方向旋轉(zhuǎn)
π
4
后得到的點(diǎn)組成的直線方程是l′:y=-
3
x+1,求原來的直線l方程.

查看答案和解析>>

科目: 來源: 題型:

在等差數(shù)列{an}中,a3=4,a8=9
(1)求數(shù)列{an}的前n項(xiàng)和Sn;        
(2)在數(shù)列{bn}中,通項(xiàng)bn=2 an,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊(cè)答案