相關(guān)習(xí)題
 0  235465  235473  235479  235483  235489  235491  235495  235501  235503  235509  235515  235519  235521  235525  235531  235533  235539  235543  235545  235549  235551  235555  235557  235559  235560  235561  235563  235564  235565  235567  235569  235573  235575  235579  235581  235585  235591  235593  235599  235603  235605  235609  235615  235621  235623  235629  235633  235635  235641  235645  235651  235659  266669 

科目: 來源: 題型:選擇題

19.雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的離心率為$\frac{{\sqrt{6}}}{2}$,則它的漸近線方程為( 。
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

查看答案和解析>>

科目: 來源: 題型:選擇題

18.如圖是2013年中央電視臺舉辦的挑戰(zhàn)主持人大賽上,七位評委為某選手打出的分?jǐn)?shù)的莖葉統(tǒng)計圖,去掉一個最高分和一個最低分后,所剩數(shù)據(jù)的平均數(shù)和方差分別為(  )
A.85,1.6B.84,4C.84,1.6D.85,4

查看答案和解析>>

科目: 來源: 題型:填空題

17.設(shè)函數(shù)y=2sin(2x-$\frac{π}{3}$)的圖象關(guān)于點P(x0,0)成中心對稱,若x0∈[-$\frac{π}{2}$,0],則x0=-$\frac{π}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.若扇形的圓心角為$\frac{2}{3}$π弧度,r=2,則扇形的面積是( 。
A.$\frac{8}{3}$πB.$\frac{4}{3}$C.$\frac{3}{2}π$D.$\frac{4}{3}$π

查看答案和解析>>

科目: 來源: 題型:選擇題

15.sin390°等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

14.在曲線y=x2(x≥0)上某一點A處作一切線使之與曲線以及x軸所圍成的面積為$\frac{1}{12}$,試求:
(1)切點A的坐標(biāo);
(2)過切點A的切線方程.

查看答案和解析>>

科目: 來源: 題型:解答題

13.春節(jié)是旅游消費(fèi)旺季,某大型商場通過對春節(jié)前后20天的調(diào)查,得到部分日經(jīng)濟(jì)收入Q與這20天中的第x天(x∈N+)的部分?jǐn)?shù)據(jù)如表:
 天數(shù)x(天) 35 79 1113 15
 日經(jīng)濟(jì)收入Q(萬元)154180198 208210 204190
(1)根據(jù)表中數(shù)據(jù),結(jié)合函數(shù)圖象的性質(zhì),從下列函數(shù)模型中選取一個最恰當(dāng)?shù)暮瘮?shù)模型描述Q與x的變化關(guān)系,只需說明理由,不用證明.
①Q(mào)=ax+b,②Q=-x2+ax+b,③Q=ax+b,④Q=b+logax.
(2)結(jié)合表中的數(shù)據(jù),根據(jù)你選擇的函數(shù)模型,求出該函數(shù)的解析式,并確定日經(jīng)濟(jì)收入最高的是第幾天;并求出這個最高值.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知兩條直線l1:2x+y-2=0與l2:2x-my+4=0
(1)若直線l1⊥l2,求直線l1與l2交點P的坐標(biāo);
(2)若直線l1∥l2,求實數(shù)m的值以及兩直線間的距離.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知f(x)為定義在R上的奇函數(shù),且當(dāng)x≥0時,f(x)=x2-(a+4)x+a
(1)求實數(shù)a的值;
(2)求f(x)的解析式.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知集合A={x|x>2m},B={x|-4<x-4<4}
(1)當(dāng)m=2時,求A∪B,A∩B;
(2)若A⊆∁RB,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案