相關(guān)習(xí)題
 0  237036  237044  237050  237054  237060  237062  237066  237072  237074  237080  237086  237090  237092  237096  237102  237104  237110  237114  237116  237120  237122  237126  237128  237130  237131  237132  237134  237135  237136  237138  237140  237144  237146  237150  237152  237156  237162  237164  237170  237174  237176  237180  237186  237192  237194  237200  237204  237206  237212  237216  237222  237230  266669 

科目: 來源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,已知A為銳角,且bsinAcosC+csinAcosB=$\frac{\sqrt{3}}{2}$a.
(1)求角A的大。
(2)設(shè)函數(shù)f(x)=tanAsinωxcosωx-$\frac{1}{2}$cos2ωx(ω>0),其圖象上相鄰兩條對稱軸間的距離為$\frac{π}{2}$,將函數(shù)y=f(x)的圖象向左平移$\frac{π}{4}$個單位,得到函數(shù)y=g(x)圖象,求函數(shù)g(x)在區(qū)間[-$\frac{π}{24}$,$\frac{π}{4}$]上值域.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知拋物線C:y2=4x焦點為F,直線MN過焦點F且與拋物線C交于M,N兩點,P為拋物線C準線l上一點且PF⊥MN,連接PM交y軸于Q點,過Q作QD⊥MF于點D,若|MD|=2|FN|,則|MF|=$\sqrt{3}$+2.

查看答案和解析>>

科目: 來源: 題型:選擇題

4.定義在R上的奇函數(shù)f(x)滿足f(x+2)=f(2-x),當(dāng)x∈[0,2]時,f(x)=-4x2+8x.若在區(qū)間[a,b]上,存在m(m≥3)個不同整數(shù)xi(i=1,2,…,m),滿足$\sum_{i=1}^{m-1}$|f(xi)-f(xi+1)|≥72,則b-a的最小值為( 。
A.15B.16C.17D.18

查看答案和解析>>

科目: 來源: 題型:解答題

3.某學(xué)校舉行物理競賽,有8名男生和12名女生報名參加,將這20名學(xué)生的成績制成莖葉圖如圖所示,成績不低于80分的學(xué)生獲得“優(yōu)秀獎”,其余獲“紀念獎”.
(Ⅰ)求出8名男生的平均成績和12名女生成績的中位數(shù);
(Ⅱ)按照獲獎類型,用分層抽樣的方法從這20名學(xué)生中抽取5人,再從選出的5人中任選3人,求恰有1人獲“優(yōu)秀獎”的概率.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=$\sqrt{3}$sinωx cosωx-sin2ωx+1(ω>0)相鄰兩條對稱軸之間的距離為$\frac{π}{2}$.
(Ⅰ)求ω的值及函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)已知a,b,c分別為△ABC中角A,B,C的對邊,且滿足a=$\sqrt{3}$,f(A)=1,求△ABC 面積 S 的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.下列命題為真命題的是( 。
A.若 x>y>0,則 ln x+ln y>0
B.“φ=$\frac{π}{2}$”是“函數(shù) y=sin(2x+φ) 為偶函數(shù)”的充要條件
C.?x0∈(-∞,0),使 3x0<4x0成立
D.已知兩個平面α,β,若兩條異面直線m,n滿足m?α,n?β且 m∥β,n∥α,則α∥β

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知集合 A={x|x2<4},B={0,1,2,3},則A∩B=(  )
A.B.{0}C.{0,1}D.{0,1,2}

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖,有一個正三棱錐的零件,P是側(cè)面ACD上的一點.過點P作一個與棱AB垂直的截面,怎樣畫法?并說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

18.已知圓C:x2+y2=9,過點P(3,1)作圓C的切線,則切線方程為x=3或4x+3y-15=0.

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知函數(shù)f(x)=ax3-bx+4,當(dāng)x=2時,函數(shù)f(x)取得極值$-\frac{4}{3}$.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)若方程f(x)=k有3個不等的實數(shù)解,求實數(shù)k的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案