相關(guān)習(xí)題
 0  237706  237714  237720  237724  237730  237732  237736  237742  237744  237750  237756  237760  237762  237766  237772  237774  237780  237784  237786  237790  237792  237796  237798  237800  237801  237802  237804  237805  237806  237808  237810  237814  237816  237820  237822  237826  237832  237834  237840  237844  237846  237850  237856  237862  237864  237870  237874  237876  237882  237886  237892  237900  266669 

科目: 來源: 題型:選擇題

1.如圖,網(wǎng)格紙上的小正方形的邊長為1,粗實線畫出的是某多面體的三視圖,則該多面體外接球的表面積為
(  )
A.B.18πC.36πD.144π

查看答案和解析>>

科目: 來源: 題型:填空題

20.已知a,b表示兩條不同直線,α,β,γ表示三個不重合的平面,給出下列命題:
①若α∩γ=a,β∩γ=b,且a∥b,則α∥β;
②若a,b相交且都在α,β外,a∥α,b∥α,a∥β,b∥β,則α∥β;
③若a?α,a∥β,α∩β=b,則a∥b.
其中正確命題的序號是②③.

查看答案和解析>>

科目: 來源: 題型:填空題

19.如圖所示的三角形數(shù)陣角“萊布尼茲調(diào)和三角形”,它是由整數(shù)的倒數(shù)組成的,第n行有n個數(shù),且兩端的數(shù)均為$\frac{1}{n}({n≥2})$,每個數(shù)使它下一行左右相鄰兩個數(shù)的和,如$\frac{1}{1}=\frac{1}{2}+\frac{1}{2},\frac{1}{2}=\frac{1}{3}+\frac{1}{6},\frac{1}{3}=\frac{1}{4}+\frac{1}{12}$,則第7行第5個數(shù)(從左到右)為$\frac{1}{105}$.

查看答案和解析>>

科目: 來源: 題型:填空題

18.若復(fù)數(shù)z滿足$\frac{1-z}{1+z}=i$,則$|{\overline z+2}|$的值為$\sqrt{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知P(x0,y0)是拋物線y2=2px(p>0)上的一點,過P點的切線方程的斜率可通過如下方式求得,在y2=2px兩邊同時對x求導(dǎo),得2yy'=2p,則$y'=\frac{p}{y}$,所以過點P的切線的斜率$k=\frac{p}{y_0}$,試用上述方法求出雙曲線${x^2}-\frac{y^2}{2}=1$在$P({\sqrt{2},\sqrt{2}})$處的切線方程為( 。
A.2x-y=0B.$2x-y-\sqrt{2}=0$C.$2x-3y-\sqrt{2}=0$D.$x-y-\sqrt{2}=0$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.在平面幾何中,可以得出正確結(jié)論:“正三角形的內(nèi)切圓半徑等于這個正三角形的高的$\frac{1}{3}$.”拓展到空間中,類比平面幾何的上述結(jié)論,則正四面體的內(nèi)切球半徑等于這個正四面體的高的(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{8}$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.下面命題:
①如果讓實數(shù)a與ai對應(yīng),那么實數(shù)集與純虛數(shù)集一一對應(yīng);
②兩個復(fù)數(shù)互為共軛復(fù)數(shù)的充要條件是其積為實數(shù);
③x=y=1是x+yi=1+i的充分非必要條件;
④0比-i大.
其中正確的命題的個數(shù)是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

14.平面向量$\overrightarrow{a}$=(1,-2),$\overrightarrow$=(2,m-1),$\overrightarrow{c}$=(4,n),若$\overrightarrow{a}$∥$\overrightarrow$,$\overrightarrow$⊥$\overrightarrow{c}$,則m+n的值為( 。
A.1B.-1C.2D.-2

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知a,b,c分別為△ABC的三個內(nèi)角A,B,C的對邊,b=$\sqrt{2}$且(sinA+sinB)(a-$\sqrt{2}$)=(c-$\sqrt{2}$)sinC,則A=$\frac{π}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

12.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}(x+1),0≤x≤1\\ f(x-1),x>1\end{array}\right.$,則$f(\sqrt{2})$的值是( 。
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

同步練習(xí)冊答案