相關(guān)習(xí)題
 0  239082  239090  239096  239100  239106  239108  239112  239118  239120  239126  239132  239136  239138  239142  239148  239150  239156  239160  239162  239166  239168  239172  239174  239176  239177  239178  239180  239181  239182  239184  239186  239190  239192  239196  239198  239202  239208  239210  239216  239220  239222  239226  239232  239238  239240  239246  239250  239252  239258  239262  239268  239276  266669 

科目: 來源: 題型:解答題

5.已知cos($\frac{π}{6}$+θ)=-$\frac{12}{13}$,θ是銳角,求sinθ的值.

查看答案和解析>>

科目: 來源: 題型:解答題

4.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)A(-4,0)的直線l與橢圓C相切于點(diǎn)B,與y軸交于點(diǎn)D(0,2),又橢圓的離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)圓Q與直線l相切于點(diǎn)B,且經(jīng)過點(diǎn)F2,求圓Q的方程,并判斷圓Q與圓x2+y2=a2的位置關(guān)系.

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)中,F(xiàn)1,F(xiàn)2為左,右焦點(diǎn),以F1,F(xiàn)2為直徑的圓與橢圓在第一、三象限的交點(diǎn)分別為A、B,若直線AB與直線x+$\sqrt{3}$y-7=0互相垂直,則橢圓的離心率為(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$-1D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知奇函數(shù)f(x)的定義域?yàn)镽,當(dāng)x<0時(shí),f(x)=x(1-x),則f(x)的解析式為f(x)=$\left\{\begin{array}{l}{x(1-x),x<0}\\{0,x=0}\\{x(1+x),x>0}\end{array}\right.$.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若曲線C:y=x2+aln(x+1)-2上斜率最小的一條切線與直線x+2y-3=0垂直,則實(shí)數(shù)a=2.

查看答案和解析>>

科目: 來源: 題型:解答題

6.已知函數(shù)f(x)=aex-blnx,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為$y=(\frac{1}{e}-1)x+1$.
(1)求a,b;
(2)證明:f(x)>0.

查看答案和解析>>

科目: 來源: 題型:解答題

5.漳州水仙鱗莖碩大,箭多花繁,色美香郁,素雅娟麗,有“天下水仙數(shù)漳州”之美譽(yù).現(xiàn)某水仙花雕刻師受雇每天雕刻250粒水仙花,雕刻師每雕刻一粒可賺1.2元,如果雕刻師當(dāng)天超額完成任務(wù),則超出的部分每粒賺1.7元;如果當(dāng)天未能按量完成任務(wù),則按實(shí)際完成的雕刻量領(lǐng)取當(dāng)天工資.
(I)求雕刻師當(dāng)天收入(單位:元)關(guān)于雕刻量n(單位:粒,n∈N)的函數(shù)解析式f(n);
(Ⅱ)該雕刻師記錄了過去10天每天的雕刻量n(單位:粒),整理得如表:
雕刻量n210230250270300
頻數(shù)12331
以10天記錄的各雕刻量的頻率作為各雕刻量發(fā)生的概率.
(。┣笤摰窨處熯@10天的平均收入;
(ⅱ)求該雕刻師當(dāng)天收入不低于300元的概率.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的離心率等于2,其兩條漸近線與拋物線y2=2px(p>0)的準(zhǔn)線分別交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),${S_{△AOB}}=\frac{{\sqrt{3}}}{4}$,則p=1.

查看答案和解析>>

科目: 來源: 題型:填空題

3.設(shè)向量$\overrightarrow{AB}=(x,x+1),\overrightarrow{CD}=(1,-2)$,且$\overrightarrow{AB}$∥$\overrightarrow{CD}$,則x=-$\frac{1}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.若不等式ln(x+2)+a(x2+x)≥0對(duì)于任意的x∈[-1,+∞)恒成立,則實(shí)數(shù)a的取值范圍是(  )
A.[0,+∞)B.[0,1]C.[0,e]D.[-1,0]

查看答案和解析>>

同步練習(xí)冊(cè)答案