相關(guān)習(xí)題
 0  239806  239814  239820  239824  239830  239832  239836  239842  239844  239850  239856  239860  239862  239866  239872  239874  239880  239884  239886  239890  239892  239896  239898  239900  239901  239902  239904  239905  239906  239908  239910  239914  239916  239920  239922  239926  239932  239934  239940  239944  239946  239950  239956  239962  239964  239970  239974  239976  239982  239986  239992  240000  266669 

科目: 來(lái)源: 題型:解答題

7.襄陽(yáng)農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期12月1日12月2日12月3日12月4日12月5日
溫差x(℃)101113128
發(fā)芽數(shù)y(顆)2326322616
襄陽(yáng)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠?
注:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})•({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$•$\overline{x}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}x=1+cost\\ y=sint\end{array}\right.$(為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線的極坐標(biāo)方程是$2ρsin(α+\frac{π}{4})=2\sqrt{2}$,曲線C1的極坐標(biāo)方程為θ=α0,其中α0滿足tanα0=2,曲線C1與圓C的交點(diǎn)為O,P,與直線的交點(diǎn)為Q,求線段PQ的長(zhǎng).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

5.在平面直角坐標(biāo)系中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù),α∈[0,π]),直線l的極坐標(biāo)方程為$ρ=\frac{4}{{\sqrt{2}sin({θ-\frac{π}{4}})}}$.
(1)寫出曲線C的普通方程和直線l的直角坐標(biāo)方程;
(2)P為曲線C上任意一點(diǎn),Q為直線l任意一點(diǎn),求|PQ|的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.已知拋物線C頂點(diǎn)在原點(diǎn),焦點(diǎn)在y軸上,拋物線C上一點(diǎn)Q(a,2)到焦點(diǎn)的距離為3,線段AB的兩端點(diǎn)A(x1,y1)、B(x2,y2)在拋物線C上.
(1)求拋物線C的方程;
(2)若y軸上存在一點(diǎn)M(0,m)(m>0),使線段AB經(jīng)過(guò)點(diǎn)M時(shí),以AB為直徑的圓經(jīng)過(guò)原點(diǎn),求m的值;
(3)在拋物線C上存在點(diǎn)D(x3,y3),滿足x3<x1<x2,若△ABD是以角A為直角的等腰直角三角形,求△ABD面積的最小值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ex-1-$\frac{ax}{x-1}$,a∈R.
(1)若函數(shù)g(x)=(x-1)f(x)在(0,1)上有且只有一個(gè)極值點(diǎn),求a的范圍;
(2)當(dāng)a≤-1時(shí),證明:f(x)lnx>0對(duì)于任意x∈(0,1)∪(1,+∞)成立.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.某幾何體三視圖如圖所示,則該幾何體的體積為$\frac{16}{3}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.若隨機(jī)變量X服從正態(tài)分布N(4,1),則P(x>6)的值為( 。▍⒖紨(shù)據(jù):若隨機(jī)變量X~N(μ,σ2),則P(μ-σ<x<μ+σ)=0.6826,P(μ-2σ<x<μ+2σ)=0.9544,P(μ-3σ<x<μ+3σ)=0.9974)
A.0.1587B.0.0228C.0.0013D.0.4972

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

20.網(wǎng)購(gòu)是當(dāng)前民眾購(gòu)物的新方式,某公司為改進(jìn)營(yíng)銷方式,隨機(jī)調(diào)查了100名市民,統(tǒng)計(jì)其周平均網(wǎng)購(gòu)的次數(shù),并整理得到如下的頻數(shù)分布直方圖.這100名市民中,年齡不超過(guò)40歲的有65人將所抽樣本中周平均網(wǎng)購(gòu)次數(shù)不小于4次的市民稱為網(wǎng)購(gòu)迷,且已知其中有5名市民的年齡超過(guò)40歲.
(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,能否在犯錯(cuò)誤的概率不超過(guò)0.10的前提下認(rèn)為網(wǎng)購(gòu)迷與年齡不超過(guò)40歲有關(guān)?
網(wǎng)購(gòu)迷非網(wǎng)購(gòu)迷合計(jì)
年齡不超過(guò)40歲
年齡超過(guò)40歲
合計(jì)
(2)若從網(wǎng)購(gòu)迷中任意選取2名,求其中年齡丑啊過(guò)40歲的市民人數(shù)ξ的分布列與期望.
附:${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$;
P(K2≥k00.150.100.050.01
k02.0722.7063.8416.635

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體中最長(zhǎng)的棱長(zhǎng)為(  )
A.$3\sqrt{3}$B.$2\sqrt{6}$C.$\sqrt{21}$D.$2\sqrt{5}$

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

18.已知某產(chǎn)品的廣告費(fèi)用x(單位:萬(wàn)元)與銷售額y(單位:萬(wàn)元)具有線性關(guān)系關(guān)系,其統(tǒng)計(jì)數(shù)據(jù)如下表:
x3456
y25304045
由上表可得線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為8萬(wàn)元時(shí)的銷售額是(  )
附:$\widehat$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat$x.
A.59.5B.52.5C.56D.63.5

查看答案和解析>>

同步練習(xí)冊(cè)答案