科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:填空題
如圖,陰影部分是由四個全等的直角三角形組成的圖形,若直角三角形兩條直角邊的長分別為,且,則在大正方形內(nèi)隨即擲一點,這一點落在正方形內(nèi)的概率為__________.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:填空題
已知,且,則__________.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:填空題
設(shè)拋物線的焦點為,過點作直線與拋物線分別交于兩點,若點滿足,過作軸的垂線與拋物線交于點,若,則點的橫坐標(biāo)為__________.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
已知數(shù)列的前項和為,.
(Ⅰ)證明數(shù)列是等比數(shù)列,并求數(shù)列的通項公式;
(Ⅱ)設(shè),求證:.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
為了研究家用轎車在高速公路上的車速情況,交通部門隨機對50名家用轎車駕駛員進行調(diào)查,得到其在高速公路上行駛時的平均車速情況為:在30名男性駕駛員中,平均車速超過的有20人,不超過的有10人.在20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.
(Ⅰ)完成下面的列聯(lián)表,并判斷是否有的把握認為平均車速超過的人與性別有關(guān);
平均車數(shù)超過 人數(shù) | 平均車速不超過 人數(shù) | 合計 | |
男性駕駛員人數(shù) | |||
女性駕駛員人數(shù) | |||
合計 |
(Ⅱ)以上述數(shù)據(jù)樣本來估計總體,現(xiàn)從高速公路上行駛的大量家用轎車中隨即抽取3輛,記這3輛車中駕駛員為女性且車速不超過的車輛數(shù)為,若每次抽取的結(jié)果是相互獨立的,求的分布列和數(shù)學(xué)期望
參考公式:,其中.
參考數(shù)據(jù):
0.150 | 0.100 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
已知的三個內(nèi)角的對邊分別為.
(Ⅰ)若,求證:;
(Ⅱ)若,且的面積,求角.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
已知分別為橢圓的左、右焦點,點在橢圓上.
(Ⅰ)求的最小值;
(Ⅱ)若且,已知直線與橢圓交于兩點,過點且平行于直線的直線交橢圓于另一點,問:四邊形能否程成為平行四邊形?若能,請求出直線的方程;若不能,請說明理由.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
已知函數(shù).
(Ⅰ)求過點且與曲線相切的直線方程;
(Ⅱ)設(shè),其中為非零實數(shù),若有兩個極值點,且,求證:.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
在直角坐標(biāo)系中,曲線(為參數(shù),),曲線(為參數(shù)).以坐標(biāo)原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為:,記曲線與的交點為.
(Ⅰ)求點的直角坐標(biāo);
(Ⅱ)當(dāng)曲線與有且只有一個公共點時,與相較于兩點,求的值.
查看答案和解析>>
科目: 來源:2017屆重慶市高三學(xué)業(yè)質(zhì)量調(diào)研抽測(第一次)數(shù)學(xué)理試卷(解析版) 題型:解答題
設(shè)的最小值為.
(Ⅰ)求的值;
(Ⅱ)設(shè),求的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com