科目: 來源: 題型:
【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱是上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù).
(Ⅰ)若是奇函數(shù),求的值.
(Ⅱ)當(dāng)時,求函數(shù)在上的值域,判斷函數(shù)在上是否為有界函數(shù),并說明理由.
(Ⅲ)若函數(shù)在上是以為上界的函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中, 是正方形, 平面, , , , 分別是, , 的中點(diǎn).
()求四棱錐的體積.
()求證:平面平面.
()在線段上確定一點(diǎn),使平面,并給出證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù)f(x)=lnx,g(x)=ax+ ,函數(shù)f(x)的圖象與x軸的交點(diǎn)也在函數(shù)g(x)的圖象上,且在此點(diǎn)有公切線. (Ⅰ)求a、b的值;
(Ⅱ)試比較f(x)與g(x)的大。
查看答案和解析>>
科目: 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)不超過尾/立方米時, 的值為千克/年;當(dāng)時, 是的一次函數(shù),且當(dāng)時, .
()當(dāng)時,求關(guān)于的函數(shù)的表達(dá)式.
()當(dāng)養(yǎng)殖密度為多大時,每立方米的魚的年生長量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】給出以下四個說法: ①繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
②在刻畫回歸模型的擬合效果時,相關(guān)指數(shù)R2的值越大,說明擬合的效果越好;
③設(shè)隨機(jī)變量ξ服從正態(tài)分布N(4,22),則p(ξ>4)=
④對分類變量X與Y,若它們的隨機(jī)變量K2的觀測值k越小,則判斷“X與Y有關(guān)系”的把握程度越大.
其中正確的說法是( )
A.①④
B.②③
C.①③
D.②④
查看答案和解析>>
科目: 來源: 題型:
【題目】節(jié)日前夕,小李在家門前的樹上掛了兩串彩燈,這兩串彩燈的第一次閃亮相互獨(dú)立,且都在通電后的4秒內(nèi)任一時刻等可能發(fā)生,然后每串彩燈以4秒為間隔閃亮,那么這兩串彩燈同時通電后,它們第一次閃亮的時候相差不超過2秒的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax﹣lnx;g(x)= .
(1)討論函數(shù)f(x)的單調(diào)性;
(2)求證:若a=e(e是自然常數(shù)),當(dāng)x∈[1,e]時,f(x)≥e﹣g(x)恒成立;
(3)若h(x)=x2[1+g(x)],當(dāng)a>1時,對于x1∈[1,e],x0∈[1,e],使f(x1)=h(x0),求a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,4]上的最大值為9,最小值為1,記f(x)=g(|x|)。
(1)求實(shí)數(shù)a,b的值;
(2)若不等式f(2k)>1成立,求實(shí)數(shù)k的取值范圍;
(3)定義在[p,q]上的函數(shù)(x),設(shè)p=x0<x1<…<xi-1<xi<…<xn=q,x1,x2,…,xn-l將區(qū)間[p,q]任意劃分成n個小區(qū)間,如果存在一個常數(shù)M>0,使得和式恒成立,則稱函數(shù)(x)為在[p,q]上的有界變差函數(shù)。試判斷函數(shù)f(x)是否為在[0,4]上的有界變差函數(shù)?若是,求M的最小值;若不是,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com