相關習題
 0  259849  259857  259863  259867  259873  259875  259879  259885  259887  259893  259899  259903  259905  259909  259915  259917  259923  259927  259929  259933  259935  259939  259941  259943  259944  259945  259947  259948  259949  259951  259953  259957  259959  259963  259965  259969  259975  259977  259983  259987  259989  259993  259999  260005  260007  260013  260017  260019  260025  260029  260035  260043  266669 

科目: 來源: 題型:

【題目】在等差數(shù)列{an}中,a3+a4+a5=84,a9=73.
(1)求數(shù)列{an}的通項公式;
(2)對任意m∈N* , 將數(shù)列{an}中落入?yún)^(qū)間(9m , 92m)內的項的個數(shù)記為bm , 求數(shù)列{bm}的前m項和Sm

查看答案和解析>>

科目: 來源: 題型:

【題目】現(xiàn)有甲、乙兩個靶.某射手向甲靶射擊一次,命中的概率為 ,命中得1分,沒有命中得0分;向乙靶射擊兩次,每次命中的概率為 ,每命中一次得2分,沒有命中得0分.該射手每次射擊的結果相互獨立.假設該射手完成以上三次射擊.
(1)求該射手恰好命中一次得的概率;
(2)求該射手的總得分X的分布列及數(shù)學期望EX.

查看答案和解析>>

科目: 來源: 題型:

【題目】某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分。每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數(shù)兌換獎品。

)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,的概率;

)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的數(shù)學期望較大?

查看答案和解析>>

科目: 來源: 題型:

【題目】從甲、乙兩名學生中選拔一人參加射箭比賽,為此需要對他們的射箭水平進行測試.現(xiàn)這兩名學生在相同條件下各射箭10次,命中的環(huán)數(shù)如下:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8

(1)計算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標準差;

(2)比較兩個人的成績,然后決定選擇哪名學生參加射箭比賽.

查看答案和解析>>

科目: 來源: 題型:

【題目】“中國人均讀書本(包括網(wǎng)絡文學和教科書),比韓國的本、法國的本、日本的本、猶太人的本少得多,是世界上人均讀書最少的國家”,這個論斷被各種媒體反復引用.出現(xiàn)這樣統(tǒng)計結果無疑是令人尷尬的,而且和其他國家相比,我國國民的閱讀量如此之低,也和我國是傳統(tǒng)的文明古國、禮儀之邦的地位不相符.某小區(qū)為了提高小區(qū)內人員的讀書興趣,特舉辦讀書活動,準備進一定量的書籍豐富小區(qū)圖書站,由于不同年齡段需看不同類型的書籍,為了合理配備資源,現(xiàn)對小區(qū)內看書人員進行年齡調查,隨機抽取了一天名讀書者進行調查,將他們的年齡分成段:,,,,后得到如圖所示的頻率分布直方圖.問:

(1)估計在這名讀書者中年齡分布在的人數(shù);

(2)求這名讀書者年齡的平均數(shù)和中位數(shù);

(3)若從年齡在的讀書者中任取名,求這兩名讀書者年齡在的人數(shù)恰為的概率.

查看答案和解析>>

科目: 來源: 題型:

【題目】某生產企業(yè)研發(fā)了一種新產品,該產品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:

銷售單價/元

銷售量/萬件

(1)根據(jù)表中數(shù)據(jù),建立關于的線性回歸方程;

(2)從反饋的信息來看,消費者對該產品的心理價(單位:元/件)在內,已知該產品的成本是元,那么在消費者對該產品的心理價的范圍內,銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)

參考數(shù)據(jù):

參考公式:

查看答案和解析>>

科目: 來源: 題型:

【題目】公元263年左右,我國數(shù)學家劉徽發(fā)現(xiàn)當圓內接正多邊形的邊數(shù)無限增加時,多邊形面積可無限逼近圓的面積,并創(chuàng)立了“割圓術”,利用“割圓術”劉徽得到了圓周率精確到小數(shù)點后兩位的近似值,這就是著名的“徽率”,如圖是利用劉徽的“割圓術”思想設計的一個程序框圖,則輸出的值為 ( )

(參考數(shù)據(jù):

A. B. C. D.

查看答案和解析>>

科目: 來源: 題型:

【題目】已知函數(shù)f (x)x2g(x)x1.

(1)若存在xR使f(x)<b·g(x),求實數(shù)b的取值范圍;

(2)F(x)f(x)mg(x)1mm2,且|F(x)|上單調遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:

【題目】設集合,若AB=B,求的取值范圍

查看答案和解析>>

科目: 來源: 題型:

【題目】2007全運會上兩名射擊運動員甲、乙在比賽中打出如下成績:

甲:9.4,8.7,7.5,8.4,10.1,10.5,10.7,7.2,7.8,10.8;

乙:9.1,8.7,7.1,9.8,9.7,8.5,10.1,9.2,10.1,9.1;

(1)用莖葉圖表示甲,乙兩個成績;并根據(jù)莖葉圖分析甲、乙兩人成績;

(2)分別計算兩個樣本的平均數(shù)和標準差,并根據(jù)計算結果估計哪位運動員的成績比較穩(wěn)定.

查看答案和解析>>

同步練習冊答案