科目: 來源: 題型:
【題目】在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進面包,然后以5元/個的價格出售.如果當天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以x(單位:個,60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于函數(shù),如果存在實數(shù)使得,那么稱為的線性函數(shù).
(1)下面給出兩組函數(shù),判斷是否分別為的線性函數(shù)?并說明理由;
第一組:
第二組::
(2)設(shè),線性函數(shù)為.若等式在上有解,求實數(shù)的取值范圍;
(3)設(shè),取.線性函數(shù)圖像的最低點為.若對于任意正實數(shù)且.試問是否存在最大的常數(shù),使恒成立?如果存在,求出這個的值;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數(shù),且,若任意的,當時,總有.
(1)判斷函數(shù)在[-1,1]上的單調(diào)性,并證明你的結(jié)論;
(2)解不等式:;
(3)若對所有的恒成立,其中(是常數(shù)),求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,a,b,c成等比數(shù)列,且a2﹣c2=ac﹣bc.
(Ⅰ)求∠A的大小;
(Ⅱ)若a= ,且sinA+sin(B﹣C)=2sin2C,求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù) 有且僅有四個不同的點關(guān)于直線y=1的對稱點在直線kx+y﹣1=0上,則實數(shù)k的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com