科目: 來源: 題型:
【題目】某蛋糕店計劃按天生產一種面包,每天生產量相同,生產成本每個6元,售價每個8元,未售出的面包降價處理,以每個5元的價格當天全部處理完.
(1)若該蛋糕店一天生產30個這種面包,求當天的利潤y(單位:元)關于當天需求量n(單位:個,)的函數解析式;
(2)蛋糕店記錄了30天這種面包的日需求量(單位:個),整理得表:
日需求量n | 28 | 29 | 30 | 31 | 32 | 33 |
頻數 | 3 | 4 | 6 | 6 | 7 | 4 |
假設蛋糕店在這30天內每天生產30個這種面包,求這30天的日利潤(單位:元)的平均數及方差;
(3)蛋糕店規(guī)定:若連續(xù)10天的日需求量都不超過10個,則立即停止這種面包的生產,現給出連續(xù)10天日需求量的統(tǒng)計數據為“平均數為6,方差為2”,試根據該統(tǒng)計數據決策是否一定要停止這種面包的生產?并給出理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】某飼料廠原有陳糧10噸,又購進新糧x噸,現將糧食總庫存量的一半精加工為飼料.若被精加工的新糧最多可用噸,被精加工的陳糧最多可用y2噸,記,則函數的圖象為( )
A.B.
C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,橢圓的右頂點為,左、右焦點分別為、,過點且斜率為的直線與軸交于點,與橢圓交于另一個點,且點在軸上的射影恰好為點.
(1)求點的坐標;
(2)過點且斜率大于的直線與橢圓交于兩點,若,求實數的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】近年來隨著我國在教育科研上的投入不斷加大,科學技術得到迅猛發(fā)展,國內企業(yè)的國際競爭力得到大幅提升.伴隨著國內市場增速放緩,國內有實力企業(yè)紛紛進行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設30多個分支機構,需要國內公司外派大量80后、90后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從80后和90后的員工中隨機調查了100位,得到數據如下表:
愿意被外派 | 不愿意被外派 | 合計 | |
80后 | 20 | 20 | 40 |
90后 | 40 | 20 | 60 |
合計 | 60 | 40 | 100 |
(1)根據調查的數據,是否有99%的把握認為“是否愿意被外派與年齡有關”,并說明理由;
(2)該公司舉行參觀駐海外分支機構的交流體驗活動,擬安排6名參與調查的80后、90后員工參加.80后員工中有愿意被外派的3人和不愿意被外派的3人報名參加,從中隨機選出3人,記選到愿意被外派的人數為;90后員工中有愿意被外派的4人和不愿意被外派的2人報名參加,從中隨機選出3人,記選到愿意被外派的人數為,求的概率.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
(參考公式:,其中).
查看答案和解析>>
科目: 來源: 題型:
【題目】數(其中)的圖象如圖所示,為了得到的圖象,則只要將的圖象上所有的點( )
A.向左平移個單位長度,縱坐標縮短到原來的,橫坐標不變
B.向左平移個單位長度,縱坐標伸長到原來的3倍橫坐標不變
C.向右平移個單位長度,縱坐標縮短到原來的,橫坐標不變
D.向右平移個單位長度,縱坐標伸長到原來的3倍,橫坐標不變
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數方程為(為參數),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為.
(1)求曲線的普通方程和直線的直角坐標方程;
(2)設直線與,軸的交點分別為,,若點在曲線位于第一象限的圖象上運動,求四邊形面積的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現在銀行貸款也是很風靡的,從房貸到車貸到一般的現金貸.信用卡“忽如一夜春風來”,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了100人進行抽樣分析,得到如下列聯(lián)表(單位:人)
經常使用信用卡 | 偶爾或不用信用卡 | 合計 | |
40歲及以下 | 15 | 35 | 50 |
40歲以上 | 20 | 30 | 50 |
合計 | 35 | 65 | 100 |
(1)根據以上數據,能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?
(2)①現從所抽取的40歲及以下的網民中,按“經常使用”與“偶爾或不用”這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;
②將頻率視為概率,從市所有參與調查的40歲以上的網民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數為,求隨機變量的分布列、數學期望和方差.
參考公式:,其中.
參考數據:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com