14.如圖甲所示,D為粒子源,AB處的裝置為速度選擇器,AB為平行金屬板之間的電壓U,所加勻強磁場的磁感應強度為B;平行金屬板M,N長度均為L,相距為d,其中N板接地;OO′為中軸線.其中電荷量為q、質量為m的帶負電的粒子,從D沿不同方向,以不同速率射出;從速度選擇器射出的粒子速度為v0.忽略粒子的重力和粒子之間的相互作用力,忽略電場和磁場的邊緣效應.求:

(1)速度選擇器AB兩板之間的距離.
(2)若M、N之間只有電場,M板的電勢φ隨時間t的變化圖象如圖乙所示.其周期為$\frac{L}{{v}_{0}}$;從t=0開始,大量沿OO′方向持續(xù)攝入M、N之間的離子,最終恰好全部平行離開M、N而不打在極板上.則φ0為多少?
(3)緊貼M、N右側建立直角坐標系xOy,在坐標平面的第Ⅰ、Ⅳ象限內(nèi)存在一個圓形的勻強磁場,磁場方向直于坐標平面.要使在(2)情景下所有粒子經(jīng)過磁場偏轉后,都會聚于P(2d,2d)點,求該圓形勻強磁場的磁感應強度大小的取值范圍.

分析 (1)粒子在速度選擇器中做勻速直線運動,應用平衡條件可以求出極板間的距離.
(2)粒子在MN板間做類平拋運動,應用類平拋運動規(guī)律可以求出電勢.
(3)粒子在磁場中做勻速圓周運動洛倫茲力提供向心力,求出粒子軌道半徑的臨界值,然后應用牛頓第二定律求出磁感應強度的臨界值,再確定磁感應強度的范圍.

解答 解:(1)粒子在速度選擇器中做勻速直線運動,
由平衡條件得:q$\frac{U}{wowyri3_{0}}$=qv0B0,解得,極板間的距離:d0=$\frac{U}{{B}_{0}{v}_{0}}$;
(2)粒子在MN板間做類平拋運動,
水平方向:L=v0T,解得:T=$\frac{L}{{v}_{0}}$,
粒子在MN間運動的時間與電勢φ隨時間變化規(guī)律的周期相等,
所有粒子剛好能全部離開電場而不打在極板上,可以確定在:
t=n$\frac{T}{2}$時刻進入電場的粒子恰好分別從極板右側的上下邊緣平行于極板飛出,
由類平拋運動規(guī)律得:2×$\frac{1}{2}$×$\frac{q{φ}_{0}}{md}$×$(\frac{T}{2})^{2}$=$\fracr2ymdvy{2}$,解得:φ0=$\frac{2m1bo5f1c^{2}{v}_{0}^{2}}{q{L}^{2}}$;
(3)設粒子在磁場中做圓周運動的軌道半徑為r,磁場的半徑為R,
當P點為圓形磁場的最高點且R=r時,從MN中平行射出的粒子能全部會聚于P點,
如圖所示,粒子在磁場中做勻速圓周運動洛倫茲力提供向心力,
由牛頓第二定律得:qv0B=m$\frac{{v}_{0}^{2}}{r}$,解得:B=$\frac{m{v}_{0}}{qr}$,
圓形磁場半徑最小與最大半徑分別為:R1、R2,
由幾何知識得:2R1=2d+$\fracgjldfxt{2}$,R2=2d,
解得,最大與最小磁感應強度:B1=$\frac{4m{v}_{0}}{5qd}$,B2=$\frac{m{v}_{0}}{2qd}$,
磁感應強度的范圍:$\frac{m{v}_{0}}{2qd}$≤B≤$\frac{4m{v}_{0}}{5qd}$;
答:(1)速度選擇器AB兩板之間的距離為$\frac{U}{{B}_{0}{v}_{0}}$.
(2)φ0為$\frac{2mb61ebtu^{2}{v}_{0}^{2}}{q{L}^{2}}$;
(3)該圓形勻強磁場的磁感應強度大小的取值范圍是:$\frac{m{v}_{0}}{2qd}$≤B≤$\frac{4m{v}_{0}}{5qd}$.

點評 本題考查了粒子在速度選擇器、粒子在磁場中的運動,分析清楚粒子運動過程是解題的前提,作出粒子運動軌跡、求出粒子臨界軌道半徑是解題的關鍵;應用平衡條件與牛頓第二定律可以解題.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

19.如圖所示,與水平面夾角為銳角的斜面底端A向上有三個等距點B、C和D,即AB=BC=CD,D點距水平面高為h.小滑塊以初速從A點出發(fā),沿斜面向上運動.若斜面光滑,則滑塊到達D位置時速度為零;若斜面AB部分與滑塊有處處相同的摩擦,其余部分光滑,則滑塊上滑到C位置時速度為零,然后下滑.已知重力加速度為g,則在AB有摩擦的情況下(  )
A.從C位置返回到A位置的過程中,克服阻力做功為$\frac{2}{3}$mgh
B.滑塊從B位置返回到A位置的過程中,動能變化為零
C.滑塊從C位置返回到B位置時的動能為$\frac{1}{3}$mgh
D.滑塊從B位置返回到A位置時的動能為$\frac{2}{3}$mgh

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

20.2016年10月17日7時30分我國神舟十一號載人飛船在中國酒泉衛(wèi)星發(fā)射中心順利號對接.對接后兩者繞地球麵周運動的軌道高度為h(h<R)若地球半徑為R,第一宇宙速度為υ.則可知神舟十一號和天宮二號對接后整體的環(huán)繞速度為(  )
A.$\frac{R}{R+h}$B.$\frac{R+h}{R}$vC.$\sqrt{\frac{R}{R+h}v}$D.$\sqrt{\frac{R+h}{R}}$v

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

2.一列簡諧橫波在t=0.2s時的波形圖如圖甲所示,P為x=1m處的質點,Q為x=4m處的質點,圖乙所示為質點Q的振動圖象.則下列關于該波的說法中正確的是( 。
A.該波的周期是0.4s
B.該波的傳播速度大小為40m/s
C.該波一定沿x軸的負方向傳播
D.t=0.1s時刻,質點Q的加速度大小為零
E.從t=0.2s到t=0.4s,質點P通過的路程為20cm

查看答案和解析>>

科目:高中物理 來源: 題型:解答題

9.如圖所示,一根對稱的V字形玻璃管倒置于豎直平面內(nèi),V字形玻璃管所在空間充滿著方向豎直向下的勻強電場,場強大小E=1000V/m.一個質量m=10-4kg、帶電量q=-2×10-6C的小球(小球直徑比玻璃管內(nèi)直徑稍小),從A點由靜止開始在管內(nèi)運動,小球與管壁間的動摩擦因數(shù)為μ=0.5.已知AB、BC兩管長度均為l=2m,傾角α=37°,且管頂B處有一段很短的光滑圓弧,小球在運動過程中帶電量保持不變.g=10m/s2.求:
(1)小球第一次運動到B點所需的時間t;
(2)從開始運動到最終停止,系統(tǒng)產(chǎn)生的熱量Q.

查看答案和解析>>

科目:高中物理 來源: 題型:填空題

19.振源S在O點做沿豎直方向的簡諧運動,頻率為10Hz,t=0時刻向右傳播的簡諧橫波如圖所示(向左傳播的簡諧橫波圖中未畫出).由此可得該波傳播的速度大小為20m/s;x=20m處的質點第一次到達波峰的時間t=0.975s

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

6.如圖甲所示有界勻強磁場Ⅰ的寬度與圖乙所示圓形勻強磁場Ⅱ的半徑相等,一不計重力的粒子從左邊界的M點以一定初速度水平向右垂直射入磁場Ⅰ,從右邊界射出時速度方向偏轉了θ角,該粒子以同樣的初速度沿半徑方向垂直射入磁場Ⅱ,射出磁場時速度方向偏轉了2θ角.己知磁場I、Ⅱ的磁感應強度大小分別為B1、B2,則B1與B2的比值為( 。
A.2cosθB.sinθC.cosθD.tanθ

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

3.一定質量的氣體在壓強為P0,溫度為27℃時的密度為ρ0,當壓強為2P0,溫度為327℃時,其密度為(  )
A.$\frac{{ρ}_{0}}{2}$B.ρ0C.0D.$\frac{3}{2}$ρ0

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

4.如圖所示,絕緣粗糙斜面體固定在水平地面上,斜面所在空間存在平行于斜面向上的勻強電場E,輕彈簧一端固定在斜面頂端,另一端栓接一不計質量的絕緣薄板,一帶正電的小滑塊,從斜面上的P 點處由靜止釋放后,沿斜面向上運動,并能壓縮彈簧至R 點(圖中未標出),然后返回,則( 。
A.滑塊從P 點運動到R 點的過程中,其機械能增量等于電場力與彈簧彈力做功之和
B.滑塊從P 點運動到R 點的過程中,電勢能的減小量大于重力勢能和彈簧彈性勢能的增加量之和
C.滑塊最終停在彈簧原長處
D.滑塊最終停下來,克服摩擦力所做的功小于電勢能的減小量與重力勢能增加量之差

查看答案和解析>>

同步練習冊答案