(2013?棗莊一模)如圖甲所示,兩平行金厲板A,B的板長L=0.2m,板間距d=0.2m.兩金屬板 間加如圖乙所示的交變電壓,并在兩板間形成交變的勻強電場,忽略其邊緣效應(yīng).在金 屬板上側(cè)有方向垂直于紙面向里的勻強磁場,其上下寬度D=0.4m,左右范圍足夠大,邊界MN和PQ均與金屬板垂直,勻強磁場的磁感應(yīng)強度B=1x 1O-2T.在極板下側(cè)中點O處有一粒子源,從t=0時起不斷地沿著00'發(fā)射比荷
q
m
=1x108C/kg、初速度v0=2x 105m/s的帶正電粒子.忽略粒子重力、粒子間相互作用以及粒子在極板間飛行時極 板間的電壓變化.sin30=0.5,sin37=0.6,sin45=
2
2

(1)求粒子進入磁場時的最大速率
(2)對于在磁場中飛行時間最長的粒子,求出其在磁場中飛行的時間以及由0點出發(fā) 的可能時刻.
(3)對于所有能從MN邊界飛出磁場的粒子,試求這些粒子在MN邊界上出射區(qū)域的寬度.
分析:(1)粒子在電場中做類平拋運動,恰從金屬板邊緣飛出時,進入磁場時的速率最大.根據(jù)運動學(xué)公式和牛頓第二定律結(jié)合此時AB兩板間的電壓,根據(jù)動能定理求得粒子進入磁場時的最大速率;
(2)粒子進入磁場后由洛倫茲力提供向心力而做勻速圓周運動.在磁場中飛行時間最長的粒子,其運動軌跡應(yīng)在電場中向B板偏轉(zhuǎn),在磁場中恰好與上邊界相切,畫出軌跡,由牛頓第二定律、平行四邊形定則、幾何關(guān)系及運動學(xué)公式結(jié)合求解最長的時間.由速度分解和牛頓第二定律求得對應(yīng)AB兩板間的電壓,結(jié)合UAB-t圖象可得即可得到由0點出發(fā)的可能時刻;
(3)結(jié)合上題的結(jié)果,得到對于所有能從MN邊界飛出磁場的粒子,射出時都集中在電壓U1=+300V時和電壓U2=-400V時射出點CG之間的范圍內(nèi),畫出軌跡,由運動學(xué)公式、牛頓第二定律、幾何知識結(jié)合求得這些粒子在MN邊界上出射區(qū)域的寬度.
解答:解:(1)設(shè)粒子恰從金屬板邊緣飛出時,AB兩板間的電壓為U0,由運動學(xué)公式及牛頓第二定律得:
 
1
2
d=
1
2
a1t2
 
  qE1=ma1
  E1=
U0
d

  t=
L
v0

聯(lián)立以上各式,解得,U0=400V<500V
設(shè)粒子進入磁場時的最大速率為vm,由動能定理得
 q?
1
2
U0
=
1
2
m
v
2
m
-
1
2
m
v
2
0

解得,vm=2
2
×105m/s
(2)分析可知,在磁場中飛行時間最長的粒子,其運動軌跡應(yīng)在電場中向B板偏轉(zhuǎn),在磁場中恰好與上邊界相切,如圖所示,設(shè)粒子進入磁場時,速度v與OO′成θ角,在磁場中運動時間為tm,由牛頓第二定律、平行四邊形定則、幾何關(guān)系及運動學(xué)公式得
   qvB=m
v2
R

   v=
v0
cosθ

  R(1+sinθ)=D
  T=
2πm
qB

 tm=
180°+2θ
360°
?T

聯(lián)立上述各式,解得,θ=37°,tm=
127
90
π×10-6s
≈4.43×10-6s
設(shè)這些粒子進入磁場時在垂直于金屬板方向的速度為vy,對應(yīng)AB兩板間的電壓為U1,在電場中運動的時間為t1,由O點出發(fā)的可能時間為t,則有
   vy=v0tanθ
   vy=a2t1
   qE2=ma2
   E2=
U1
d

聯(lián)立解得,U1=300V
結(jié)合UAB-t圖象可得,當U1=300V時,在一個周期內(nèi)對應(yīng)的時刻為:t0=0.4s或3.6s,因為電壓的周期為T=4s,所以粒子在O點出發(fā)可能時刻為
   t=nT+t0
即 t=(4n+0.4)s或(4n+3.6)s,其中 n=0,1,2,…
(3)對于所有能從MN邊界飛出磁場的粒子,射出時都集中在電壓U1=+300V時和電壓U2=-400V時射出點CG之間的范圍內(nèi),如圖所示.
對于電壓U1=+300V射出的粒子,設(shè)O′D=y,則由運動學(xué)公式和牛頓第二定律得
  y=
1
2
a2
t
2
1

  qE2=ma2,
   E2=
U1
d

解得,y=0.075m
由第(2)問,該粒子在磁場中的運動半徑為R,射出電場時速度v與OO′成θ角.設(shè)在MN邊界上的射出點C和射入點D之間的距離為s1,根據(jù)牛頓第二定律、平行四邊形定則和幾何關(guān)系得
   qvB=m
v2
R

   v=
v0
cosθ

  s1=2Rcosθ
聯(lián)立解得,s1=0.4m.
同理可知,對于U2=-400V時射出的粒子,GH間的距離為s2為:s2=
2mv0
qB

設(shè)在MN邊界是粒子出射區(qū)域的寬度為L,由幾何關(guān)系可知:
  L=s2+
1
2
d+y-s1

代入解得,L=0.175m
答:(1)粒子進入磁場時的最大速率是2
2
×105m/s.
(2)對于在磁場中飛行時間最長的粒子,在磁場中飛行的時間是4.43×10-6s,由0點出發(fā)的可能時刻是t=(4n+0.4)s或(4n+3.6)s,其中 n=0,1,2,….
(3)對于所有能從MN邊界飛出磁場的粒子在MN邊界上出射區(qū)域的寬度是0.175m.
點評:本題考查帶電在電磁場中的運動,綜合考查了牛頓定律、動能定理、受力分析等方面的知識和規(guī)律.對考生的分析綜合能力、應(yīng)用數(shù)學(xué)知識的能力要求較高.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中物理 來源: 題型:

(2013?棗莊一模)設(shè)想我國宇航員隨“嫦娥”號登月飛船貼近月球表面做勻速圓周運動,宇航員測出飛船繞行n圈所用的時間為t,登月后,宇航員利用身邊的彈簧測力計測出質(zhì)量為m的物體重 力為G,.已知引力常量為G1根據(jù)以上信息可得到( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2013?棗莊一模)如圖甲所示,abcd是位于豎直平面內(nèi)的正方形閉合金屬線框,金屬線框的質(zhì)量為m,電阻為R0在金屬線框的下方有一勻強磁場區(qū)域,MN和PQ是勻強磁場區(qū)域的水平邊界,并與 線框的bc邊平行,磁場方向垂直于線框平面向里.現(xiàn)使金屬線框從MN上方某一髙度處由 靜止開始下落,如圖乙是金屬線框由開始下落到完全穿過勻強磁場區(qū)域瞬間的v-t圖象,圖象中內(nèi)均為已知量.重力加速度為g不計空氣阻力.下列說法正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2013?棗莊一模)下列說法正確的是( 。

查看答案和解析>>

科目:高中物理 來源: 題型:

(2013?棗莊一模)如圖所示,水平光滑地面上依次放置著質(zhì)量m=0.08kg的10塊完全相同的長直木 板.質(zhì)量M=1.0kg、大小可忽略的小銅塊以初速度v0=6.O m/s從長木板左端滑上木 板,當銅塊滑離第一塊木板時,速度大小為v1=4.0m/S.銅塊最終停在第二塊木板上. 取g=10m/s2,結(jié)果保留兩位有效數(shù)字.求:
①第一塊木板的最終速度
②銅塊的最終速度.

查看答案和解析>>

科目:高中物理 來源: 題型:

(2013?棗莊一模)重為G的兩個完全相同的小球,與水平面間的動摩擦因數(shù)均為u.豎直向上的較小的力F作用在連接兩球輕繩的中點,繩間的夾角 a=60°,如圖所示.緩慢增大^到兩球剛要運動的過程中,下列說法正確的是(  )

查看答案和解析>>

同步練習(xí)冊答案