如圖6所示,某一點電荷產(chǎn)生的電場中有a、b兩點。已知a點的場強大小為Ea,方向與ad連線的夾角為120°,電勢為φa;b的場強大小為Eb,方向與ab連線的夾角為150°,電勢為φb。則a、b兩點的場強大小及電勢的高低相比較,有(    )

A.Ea=3Eb;φa>φb                     B.Ea=;φa>φb

C.Ea=;φa<φb                     D.Ea=3Eb;φa<φb

【解析】反向延長a、b兩點場強相交于O,O點即為場源電荷位置,由于ob=oa,根據(jù)E=有Ea=3b,點電荷周圍的等勢面是一系列同心圓,φa>φb故選項A正確。


練習冊系列答案
相關習題

科目:高中物理 來源: 題型:閱讀理解

Ⅰ.氣墊導軌工作時,空氣從導軌表面的小孔噴出,在導軌表面和滑塊內(nèi)表面之間形成一層薄薄的空氣層,使滑塊不與導軌表面直接接觸,故滑塊運動時受到的阻力大大減小,可以忽略不計.為了探究做功與物體動能之間的關系,在氣墊導軌上放置一帶有遮光片的滑塊,滑塊的一端與輕彈簧相接,彈簧另一端固定在氣墊導軌的一端,將一光電門P固定在氣墊導軌底座上適當位置(如圖1),使彈簧處于自然狀態(tài)時,滑塊上的遮光片剛好位于光電門的擋光位置,與光電門相連的光電計時器可記錄遮光片通過光電門時的擋光時間.實驗步驟如下:精英家教網(wǎng)
①用游標卡尺測量遮光片的寬度d;
②在氣墊導軌上適當位置標記一點A(圖中未標出,AP間距離遠大于d),將滑塊從A點由靜止釋放.由光電計時器讀出滑塊第一次通過光電門時遮光片的擋光時間t;
③利用所測數(shù)據(jù)求出滑塊第一次通過光電門時的速度V;
④更換勁度系數(shù)不同而自然長度相同的彈簧重復實驗步驟②③,記錄彈簧勁度系數(shù)及相應的速度V,如下表所示:
彈簧勁度系數(shù) k 2k 3k 4k 5k 6k
V (m/s) 0.71 1.00 1.22 1.41 1.58 1.73
V2 (m2/s2 0.50 1.00 1.49 1.99 2.49 2.99
V3 (m3/s3 0.36 1.00 1.82 2.80 3.94 5.18
(1)測量遮光片的寬度時游標卡尺讀數(shù)如圖2所示,讀得d=
 
m;
(2)用測量的物理量表示遮光片通過光電門時滑塊的速度的表達式V=
 
;
(3)已知滑塊從A點運動到光電門P處的過程中,彈簧對滑塊做的功與彈簧的勁度系數(shù)成正比,根據(jù)表中記錄的數(shù)據(jù),可得出合力對滑塊做的功W與滑塊通過光電門時的速度V的關系是
 

Ⅱ.現(xiàn)已離不開電視、手機等電子產(chǎn)品,但這些產(chǎn)品生產(chǎn)過程中會產(chǎn)生含多種重金屬離子的廢水,這些廢水是否達標也引起了人們的關注.某同學想測出學校附近一工廠排出廢水的電阻率,以判斷廢水是否達到排放標準(一般工業(yè)廢水電阻率的達標值為ρ≥200Ω?m).圖甲為該同學所用盛水容器,其左、右兩側(cè)面為帶有接線柱的金屬薄板(電阻極小),其余四面由絕緣材料制成,容器內(nèi)部長a=40cm,寬b=20cm,高c=10cm.他將水樣注滿容器后,進行以下操作:精英家教網(wǎng)
(1)他先后用多用電表歐姆檔的“×1k”、“×100”兩個檔位粗測水樣的電阻值時,表盤上指針如圖乙中所示,則所測水樣的電阻約為
 
Ω.
(2)他從實驗室中找到如下實驗器材更精確地測量所取水樣的電阻:
A.電流表(量程5mA,電阻RA=800Ω)
B.電壓表(量程15V,電阻RV約為10.0kΩ)
C.滑動變阻器(0~20Ω,額定電流1A)
D.電源(12V,內(nèi)阻約10Ω)
E.開關一只、導線若干
請用筆線代替導線幫他在圖丙中完成電路連接.
(3)正確連接電路后,這位同學閉合開關,測得一組U、I數(shù)據(jù);再調(diào)節(jié)滑動變阻器,重復上述測量得出一系列數(shù)據(jù)如下表所示,請你在圖丁的坐標系中作出U-I關系圖線.
U/V 2.0 3.8 6.8 8.0 10.2 11.6
I/mA 0.73 1.36 2.20 2.89 3.66 4.15
(4)由以上測量數(shù)據(jù)可以求出待測水樣的電阻率為
 
Ω?m.據(jù)此可知,所測水樣在電阻率這一指標上
 
(選填“達標”或“不達標”).

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

(1)有同學利用如圖1的裝置來驗證力的平行四邊形定則:在豎直木板上鋪有白紙,固定兩個光滑的滑輪A和B,將繩子打一個結(jié)點O,每個鉤碼的質(zhì)量相等,當系統(tǒng)達到平衡時,根據(jù)鉤碼個數(shù)讀出三根繩子的拉力TOA、TOB和TOC,回答下列問題:
a改變鉤碼個數(shù),實驗能完成的是
 

精英家教網(wǎng)
A.鉤碼的個數(shù)N1=N2=2,N3=4
B.鉤碼的個數(shù)N1=N3=3,N2=4
C.鉤碼的個數(shù)N1=N2=N3=4
D.鉤碼的個數(shù)N1=3,N2=4,N3=5
b在拆下鉤碼和繩子前,應該做好三個方面的記錄:
 
 
;
 

(2)如圖2所示裝置,在探究影響平行板電容器電容的因素實驗中,①充好電的平行板電容器的極板A與一靜電計相接,極板B接地.若極板B稍向上移動一點,由觀察到的靜電計指針變化分析平行板電容器電容變小結(jié)論的依據(jù)是
 

A.兩極板間的電壓不變,極板上的電量變大
B.兩極板間的電壓不變,極板上的電量變小
C.極板上的電量幾乎不變,兩極板間的電壓變大
D.極板上的電量幾乎不變,兩極板間的電壓變小
②如圖3所示為電容式傳感器構(gòu)件的示意圖,工作時動片(電極板A)沿平行于定片(電極板B)的方向發(fā)生一小段位移s,電容C便發(fā)生變化,通過測量電容C的變化情況就可以知道位移s.如果忽略極板的邊緣效應,那么在圖中,能正確反映電容C和位移s間函數(shù)關系的是
 
.(選填選項前面的字母)
精英家教網(wǎng)
(3)某同學在探究影響單擺振動周期的因素時,針對自己考慮到的幾個可能影響周期的物理量設計了實驗方案,并認真進行了實驗操作,取得了實驗數(shù)據(jù).他經(jīng)過分析后,在實驗誤差范圍內(nèi),找到了在擺角較小的情況下影響單擺周期的一個物理量,并通過作圖象找到了單擺周期與這個物理量的明確的數(shù)量關系.該同學的實驗數(shù)據(jù)記錄如下:
擺長L/m
周期T/s
最大擺角θ
擺球種類及質(zhì)量m/g 
0.7000 0.7500 0.8000 0.8500 0.9000
鋼球A
8.0
3.0 1.69 1.73 1.80 1.86 1.89
9.0 1.68 1.74 1.79 1.85 1.90
鋼球B
16.0
3.0 1.68 1.74 1.79 1.85 1.90
9.0 1.69 1.73 1.80 1.85 1.89
銅球
20.0
3.0 1.68 1.74 1.80 1.85 1.90
9.0 1.68 1.74 1.79 1.85 1.90
鋁球
6.0
3.0 1.68 1.74 1.80 1.85 1.90
9.0 1.69 1.74 1.80 1.86 1.91
①分析上面實驗表格中的數(shù)據(jù),你認為在擺角較小的情況下影響單擺周期的這個物理量是:
 

②利用表中給出的數(shù)據(jù),試在圖4中坐標紙上畫出T2與L的關系圖線,該圖線斜率k的表達式k=
 
,k的數(shù)值為k=
 
.利用圖線斜率k表示重力加速度的表達式為g=
 
(用字母表示).

查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第Ⅰ卷(選擇題 共31分)

一、單項選擇題.本題共5小題,每小題3分,共計15分.每小題只有一個選項符合題意.

1. 關于科學家和他們的貢獻,下列說法中正確的是[來源:Www..com]

A.安培首先發(fā)現(xiàn)了電流的磁效應

B.伽利略認為自由落體運動是速度隨位移均勻變化的運動

C.牛頓發(fā)現(xiàn)了萬有引力定律,并計算出太陽與地球間引力的大小

D.法拉第提出了電場的觀點,說明處于電場中電荷所受到的力是電場給予的

2.如圖為一種主動式光控報警器原理圖,圖中R1R2為光敏電阻,R3R4為定值電阻.當射向光敏電阻R1R2的任何一束光線被遮擋時,都會引起警鈴發(fā)聲,則圖中虛線框內(nèi)的電路是

A.與門                  B.或門               C.或非門                  D.與非門

 


3.如圖所示的交流電路中,理想變壓器原線圈輸入電壓為U1,輸入功率為P1,輸出功率為P2,各交流電表均為理想電表.當滑動變阻器R的滑動頭向下移動時

A.燈L變亮                                    B.各個電表讀數(shù)均變大

C.因為U1不變,所以P1不變                              D.P1變大,且始終有P1= P2

4.豎直平面內(nèi)光滑圓軌道外側(cè),一小球以某一水平速度v0A點出發(fā)沿圓軌道運動,至B點時脫離軌道,最終落在水平面上的C點,不計空氣阻力.下列說法中不正確的是

A.在B點時,小球?qū)A軌道的壓力為零

B.BC過程,小球做勻變速運動

C.在A點時,小球?qū)A軌道壓力大于其重力

D.AB過程,小球水平方向的加速度先增加后減小

5.如圖所示,水平面上放置質(zhì)量為M的三角形斜劈,斜劈頂端安裝光滑的定滑輪,細繩跨過定滑輪分別連接質(zhì)量為m1m2的物塊.m1在斜面上運動,三角形斜劈保持靜止狀態(tài).下列說法中正確的是

A.若m2向下運動,則斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速運動,則斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下運動,則斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上運動,則輕繩的拉力一定大于m2g

二、多項選擇題.本題共4小題,每小題4分,共計16分.每小題有多個選項符合題意.全部選對的得4分,選對但不全的得2分,錯選或不答的得0分.

6.木星是太陽系中最大的行星,它有眾多衛(wèi)星.觀察測出:木星繞太陽作圓周運動的半徑為r1、 周期為T1;木星的某一衛(wèi)星繞木星作圓周運動的半徑為r2、 周期為T2.已知萬有引力常量為G,則根據(jù)題中給定條件

A.能求出木星的質(zhì)量

B.能求出木星與衛(wèi)星間的萬有引力

C.能求出太陽與木星間的萬有引力

D.可以斷定

7.如圖所示,xOy坐標平面在豎直面內(nèi),x軸沿水平方向,y軸正方向豎直向上,在圖示空間內(nèi)有垂直于xOy平面的水平勻強磁場.一帶電小球從O點由靜止釋放,運動軌跡如圖中曲線.關于帶電小球的運動,下列說法中正確的是

A.OAB軌跡為半圓

B.小球運動至最低點A時速度最大,且沿水平方向

C.小球在整個運動過程中機械能守恒

D.小球在A點時受到的洛倫茲力與重力大小相等

8.如圖所示,質(zhì)量為M、長為L的木板置于光滑的水平面上,一質(zhì)量為m的滑塊放置在木板左端,滑塊與木板間滑動摩擦力大小為f,用水平的恒定拉力F作用于滑塊.當滑塊運動到木板右端時,木板在地面上移動的距離為s,滑塊速度為v1,木板速度為v2,下列結(jié)論中正確的是

A.上述過程中,F做功大小為            

B.其他條件不變的情況下,F越大,滑塊到達右端所用時間越長

C.其他條件不變的情況下,M越大,s越小

D.其他條件不變的情況下,f越大,滑塊與木板間產(chǎn)生的熱量越多

9.如圖所示,兩個固定的相同細環(huán)相距一定的距離,同軸放置,O1、O2分別為兩環(huán)的圓心,兩環(huán)分別帶有均勻分布的等量異種電荷.一帶正電的粒子從很遠處沿軸線飛來并穿過兩環(huán).則在帶電粒子運動過程中

A.在O1點粒子加速度方向向左

B.從O1O2過程粒子電勢能一直增加

C.軸線上O1點右側(cè)存在一點,粒子在該點動能最小

D.軸線上O1點右側(cè)、O2點左側(cè)都存在場強為零的點,它們關于O1、O2連線中點對稱

 


第Ⅱ卷(非選擇題 共89分)

三、簡答題:本題分必做題(第lO、11題)和選做題(第12題)兩部分,共計42分.請將解答填寫在答題卡相應的位置.

必做題

10.測定木塊與長木板之間的動摩擦因數(shù)時,采用如圖所示的裝置,圖中長木板水平固定.

(1)實驗過程中,電火花計時器應接在  ▲  (選填“直流”或“交流”)電源上.調(diào)整定滑輪高度,使  ▲ 

(2)已知重力加速度為g,測得木塊的質(zhì)量為M,砝碼盤和砝碼的總質(zhì)量為m,木塊的加速度為a,則木塊與長木板間動摩擦因數(shù)μ=  ▲ 

(3)如圖為木塊在水平木板上帶動紙帶運動打出的一條紙帶的一部分,0、1、2、3、4、5、6為計數(shù)點,相鄰兩計數(shù)點間還有4個打點未畫出.從紙帶上測出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.則木塊加速度大小a=  ▲  m/s2(保留兩位有效數(shù)字).

 


11.為了測量某電池的電動勢 E(約為3V)和內(nèi)阻 r,可供選擇的器材如下:

A.電流表G1(2mA  100Ω)             B.電流表G2(1mA  內(nèi)阻未知)

C.電阻箱R1(0~999.9Ω)                      D.電阻箱R2(0~9999Ω)

E.滑動變阻器R3(0~10Ω  1A)         F.滑動變阻器R4(0~1000Ω  10mA)

G.定值電阻R0(800Ω  0.1A)               H.待測電池

I.導線、電鍵若干

(1)采用如圖甲所示的電路,測定電流表G2的內(nèi)阻,得到電流表G1的示數(shù)I1、電流表G2的示數(shù)I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根據(jù)測量數(shù)據(jù),請在圖乙坐標中描點作出I1I2圖線.由圖得到電流表G2的內(nèi)阻等于

  ▲  Ω.

(2)在現(xiàn)有器材的條件下,測量該電池電動勢和內(nèi)阻,采用如圖丙所示的電路,圖中滑動變阻器①應該選用給定的器材中  ▲  ,電阻箱②選  ▲  (均填寫器材代號).

(3)根據(jù)圖丙所示電路,請在丁圖中用筆畫線代替導線,完成實物電路的連接.

 


12.選做題(請從A、B和C三小題中選定兩小題作答,并在答題卡上把所選題目對應字母后的方框涂滿涂黑.如都作答,則按A、B兩小題評分.)

A.(選修模塊3-3)(12分)

(1)下列說法中正確的是  ▲ 

A.液體表面層分子間距離大于液體內(nèi)部分子間距離,液體表面存在張力

B.擴散運動就是布朗運動

C.蔗糖受潮后會粘在一起,沒有確定的幾何形狀,它是非晶體

D.對任何一類與熱現(xiàn)象有關的宏觀自然過程進行方向的說明,都可以作為熱力學第二定律的表述

(2)將1ml的純油酸加到500ml的酒精中,待均勻溶解后,用滴管取1ml油酸酒精溶液,讓其自然滴出,共200滴.現(xiàn)在讓其中一滴落到盛水的淺盤內(nèi),待油膜充分展開后,測得油膜的面積為200cm2,則估算油酸分子的大小是  ▲  m(保留一位有效數(shù)字).

(3)如圖所示,一直立的汽缸用一質(zhì)量為m的活塞封閉一定量的理想氣體,活塞橫截面積為S,汽缸內(nèi)壁光滑且缸壁是導熱的,開始活塞被固定,打開固定螺栓K,活塞下落,經(jīng)過足夠長時間后,活塞停在B點,已知AB=h,大氣壓強為p0,重力加速度為g

①求活塞停在B點時缸內(nèi)封閉氣體的壓強;

②設周圍環(huán)境溫度保持不變,求整個過程中通過缸壁傳遞的熱量Q(一定量理想氣體的內(nèi)能僅由溫度決定).

B.(選修模塊3-4)(12分)

(1)下列說法中正確的是  ▲ 

A.照相機、攝影機鏡頭表面涂有增透膜,利用了光的干涉原理

B.光照射遮擋物形成的影輪廓模糊,是光的衍射現(xiàn)象

C.太陽光是偏振光

D.為了有效地發(fā)射電磁波,應該采用長波發(fā)射

(2)甲、乙兩人站在地面上時身高都是L0, 甲、乙分別乘坐速度為0.6c和0.8cc為光速)的飛船同向運動,如圖所示.此時乙觀察到甲的身高L  ▲  L0;若甲向乙揮手,動作時間為t0,乙觀察到甲動作時間為t1,則t1  ▲  t0(均選填“>”、“ =” 或“<”).

(3)x=0的質(zhì)點在t=0時刻開始振動,產(chǎn)生的波沿x軸正方向傳播,t1=0.14s時刻波的圖象如圖所示,質(zhì)點A剛好開始振動.

①求波在介質(zhì)中的傳播速度;

②求x=4m的質(zhì)點在0.14s內(nèi)運動的路程.

   C.(選修模塊3-5)(12分)

(1)下列說法中正確的是  ▲ 

A.康普頓效應進一步證實了光的波動特性

B.為了解釋黑體輻射規(guī)律,普朗克提出電磁輻射的能量是量子化的

C.經(jīng)典物理學不能解釋原子的穩(wěn)定性和原子光譜的分立特征

D.天然放射性元素衰變的快慢與化學、物理狀態(tài)有關

(2)是不穩(wěn)定的,能自發(fā)的發(fā)生衰變.

①完成衰變反應方程    ▲ 

衰變?yōu)?img width=40 height=25 src="http://thumb.zyjl.cn/pic1/1899/wl/3/40403.gif" >,經(jīng)過  ▲  α衰變,  ▲  β衰變.

(3)1919年,盧瑟福用α粒子轟擊氮核發(fā)現(xiàn)質(zhì)子.科學研究表明其核反應過程是:α粒子轟擊靜止的氮核后形成了不穩(wěn)定的復核,復核發(fā)生衰變放出質(zhì)子,變成氧核.設α粒子質(zhì)量為m1,初速度為v0,氮核質(zhì)量為m2,質(zhì)子質(zhì)量為m0, 氧核的質(zhì)量為m3,不考慮相對論效應.

α粒子轟擊氮核形成不穩(wěn)定復核的瞬間,復核的速度為多大?

②求此過程中釋放的核能.

四、計算題:本題共3小題,共計47分.解答時請寫出必要的文字說明、方程式和重要的演算步驟,只寫出最后答案的不能得分,有數(shù)值計算的題,答案中必須明確寫出數(shù)值和單位.

13.如圖所示,一質(zhì)量為m的氫氣球用細繩拴在地面上,地面上空風速水平且恒為v0,球靜止時繩與水平方向夾角為α.某時刻繩突然斷裂,氫氣球飛走.已知氫氣球在空氣中運動時所受到的阻力f正比于其相對空氣的速度v,可以表示為f=kvk為已知的常數(shù)).則

(1)氫氣球受到的浮力為多大?

(2)繩斷裂瞬間,氫氣球加速度為多大?

(3)一段時間后氫氣球在空中做勻速直線運動,其水平方向上的速度與風速v0相等,求此時氣球速度大。ㄔO空氣密度不發(fā)生變化,重力加速度為g).

 


14.如圖所示,光滑絕緣水平面上放置一均勻?qū)w制成的正方形線框abcd,線框質(zhì)量為m,電阻為R,邊長為L.有一方向豎直向下的有界磁場,磁場的磁感應強度為B,磁場區(qū)寬度大于L,左邊界與ab邊平行.線框在水平向右的拉力作用下垂直于邊界線穿過磁場區(qū).

(1)若線框以速度v勻速穿過磁場區(qū),求線框在離開磁場時ab兩點間的電勢差;

(2)若線框從靜止開始以恒定的加速度a運動,經(jīng)過t1時間ab邊開始進入磁場,求cd邊將要進入磁場時刻回路的電功率;

(3)若線框以初速度v0進入磁場,且拉力的功率恒為P0.經(jīng)過時間T,cd邊進入磁場,此過程中回路產(chǎn)生的電熱為Q.后來ab邊剛穿出磁場時,線框速度也為v0,求線框穿過磁場所用的時間t

      

15.如圖所示,有界勻強磁場的磁感應強度為B,方向垂直紙面向里,MN為其左邊界,磁場中放置一半徑為R的圓柱形金屬圓筒,圓心OMN的距離OO1=2R,圓筒軸線與磁場平行.圓筒用導線通過一個電阻r0接地,最初金屬圓筒不帶電.現(xiàn)有范圍足夠大的平行電子束以速度v0從很遠處沿垂直于左邊界MN向右射入磁場區(qū),已知電子質(zhì)量為m,電量為e

(1)若電子初速度滿足,則在最初圓筒上沒有帶電時,能夠打到圓筒上的電子對應MN邊界上O1兩側(cè)的范圍是多大?

(2)當圓筒上電量達到相對穩(wěn)定時,測量得到通過電阻r0的電流恒為I,忽略運動電子間的相互作用,求此時金屬圓筒的電勢φ和電子到達圓筒時速度v(取無窮遠處或大地電勢為零).

(3)在(2)的情況下,求金屬圓筒的發(fā)熱功率.

 


查看答案和解析>>

科目:高中物理 來源: 題型:閱讀理解

第八部分 靜電場

第一講 基本知識介紹

在奧賽考綱中,靜電學知識點數(shù)目不算多,總數(shù)和高考考綱基本相同,但在個別知識點上,奧賽的要求顯然更加深化了:如非勻強電場中電勢的計算、電容器的連接和靜電能計算、電介質(zhì)的極化等。在處理物理問題的方法上,對無限分割和疊加原理提出了更高的要求。

如果把靜電場的問題分為兩部分,那就是電場本身的問題、和對場中帶電體的研究,高考考綱比較注重第二部分中帶電粒子的運動問題,而奧賽考綱更注重第一部分和第二部分中的靜態(tài)問題。也就是說,奧賽關注的是電場中更本質(zhì)的內(nèi)容,關注的是縱向的深化和而非橫向的綜合。

一、電場強度

1、實驗定律

a、庫侖定律

內(nèi)容;

條件:⑴點電荷,⑵真空,⑶點電荷靜止或相對靜止。事實上,條件⑴和⑵均不能視為對庫侖定律的限制,因為疊加原理可以將點電荷之間的靜電力應用到一般帶電體,非真空介質(zhì)可以通過介電常數(shù)將k進行修正(如果介質(zhì)分布是均勻和“充分寬廣”的,一般認為k′= k /εr)。只有條件⑶,它才是靜電學的基本前提和出發(fā)點(但這一點又是常常被忽視和被不恰當?shù)亍熬C合應用”的)。

b、電荷守恒定律

c、疊加原理

2、電場強度

a、電場強度的定義

電場的概念;試探電荷(檢驗電荷);定義意味著一種適用于任何電場的對電場的檢測手段;電場線是抽象而直觀地描述電場有效工具(電場線的基本屬性)。

b、不同電場中場強的計算

決定電場強弱的因素有兩個:場源(帶電量和帶電體的形狀)和空間位置。這可以從不同電場的場強決定式看出——

⑴點電荷:E = k

結(jié)合點電荷的場強和疊加原理,我們可以求出任何電場的場強,如——

⑵均勻帶電環(huán),垂直環(huán)面軸線上的某點P:E = ,其中r和R的意義見圖7-1。

⑶均勻帶電球殼

內(nèi)部:E內(nèi) = 0

外部:E = k ,其中r指考察點到球心的距離

如果球殼是有厚度的的(內(nèi)徑R1 、外徑R2),在殼體中(R1<r<R2):

E =  ,其中ρ為電荷體密度。這個式子的物理意義可以參照萬有引力定律當中(條件部分)的“剝皮法則”理解〔即為圖7-2中虛線以內(nèi)部分的總電量…〕。

⑷無限長均勻帶電直線(電荷線密度為λ):E = 

⑸無限大均勻帶電平面(電荷面密度為σ):E = 2πkσ

二、電勢

1、電勢:把一電荷從P點移到參考點P0時電場力所做的功W與該電荷電量q的比值,即

U = 

參考點即電勢為零的點,通常取無窮遠或大地為參考點。

和場強一樣,電勢是屬于場本身的物理量。W則為電荷的電勢能。

2、典型電場的電勢

a、點電荷

以無窮遠為參考點,U = k

b、均勻帶電球殼

以無窮遠為參考點,U = k ,U內(nèi) = k

3、電勢的疊加

由于電勢的是標量,所以電勢的疊加服從代數(shù)加法。很顯然,有了點電荷電勢的表達式和疊加原理,我們可以求出任何電場的電勢分布。

4、電場力對電荷做功

WAB = q(UA - UB)= qUAB 

三、靜電場中的導體

靜電感應→靜電平衡(狹義和廣義)→靜電屏蔽

1、靜電平衡的特征可以總結(jié)為以下三層含義——

a、導體內(nèi)部的合場強為零;表面的合場強不為零且一般各處不等,表面的合場強方向總是垂直導體表面。

b、導體是等勢體,表面是等勢面。

c、導體內(nèi)部沒有凈電荷;孤立導體的凈電荷在表面的分布情況取決于導體表面的曲率。

2、靜電屏蔽

導體殼(網(wǎng)罩)不接地時,可以實現(xiàn)外部對內(nèi)部的屏蔽,但不能實現(xiàn)內(nèi)部對外部的屏蔽;導體殼(網(wǎng)罩)接地后,既可實現(xiàn)外部對內(nèi)部的屏蔽,也可實現(xiàn)內(nèi)部對外部的屏蔽。

四、電容

1、電容器

孤立導體電容器→一般電容器

2、電容

a、定義式 C = 

b、決定式。決定電容器電容的因素是:導體的形狀和位置關系、絕緣介質(zhì)的種類,所以不同電容器有不同的電容

⑴平行板電容器 C =  =  ,其中ε為絕對介電常數(shù)(真空中ε0 =  ,其它介質(zhì)中ε= ),εr則為相對介電常數(shù),εr =  

⑵柱形電容器:C = 

⑶球形電容器:C = 

3、電容器的連接

a、串聯(lián)  = +++ … +

b、并聯(lián) C = C1 + C2 + C3 + … + Cn 

4、電容器的能量

用圖7-3表征電容器的充電過程,“搬運”電荷做功W就是圖中陰影的面積,這也就是電容器的儲能E ,所以

E = q0U0 = C = 

電場的能量。電容器儲存的能量究竟是屬于電荷還是屬于電場?正確答案是后者,因此,我們可以將電容器的能量用場強E表示。

對平行板電容器 E = E2 

認為電場能均勻分布在電場中,則單位體積的電場儲能 w = E2 。而且,這以結(jié)論適用于非勻強電場。

五、電介質(zhì)的極化

1、電介質(zhì)的極化

a、電介質(zhì)分為兩類:無極分子和有極分子,前者是指在沒有外電場時每個分子的正、負電荷“重心”彼此重合(如氣態(tài)的H2 、O2 、N2和CO2),后者則反之(如氣態(tài)的H2O 、SO2和液態(tài)的水硝基笨)

b、電介質(zhì)的極化:當介質(zhì)中存在外電場時,無極分子會變?yōu)橛袠O分子,有極分子會由原來的雜亂排列變成規(guī)則排列,如圖7-4所示。

2、束縛電荷、自由電荷、極化電荷與宏觀過剩電荷

a、束縛電荷與自由電荷:在圖7-4中,電介質(zhì)左右兩端分別顯現(xiàn)負電和正電,但這些電荷并不能自由移動,因此稱為束縛電荷,除了電介質(zhì),導體中的原子核和內(nèi)層電子也是束縛電荷;反之,能夠自由移動的電荷稱為自由電荷。事實上,導體中存在束縛電荷與自由電荷,絕緣體中也存在束縛電荷和自由電荷,只是它們的比例差異較大而已。

b、極化電荷是更嚴格意義上的束縛電荷,就是指圖7-4中電介質(zhì)兩端顯現(xiàn)的電荷。而宏觀過剩電荷是相對極化電荷來說的,它是指可以自由移動的凈電荷。宏觀過剩電荷與極化電荷的重要區(qū)別是:前者能夠用來沖放電,也能用儀表測量,但后者卻不能。

第二講 重要模型與專題

一、場強和電場力

【物理情形1】試證明:均勻帶電球殼內(nèi)部任意一點的場強均為零。

【模型分析】這是一個疊加原理應用的基本事例。

如圖7-5所示,在球殼內(nèi)取一點P ,以P為頂點做兩個對頂?shù)摹㈨斀呛苄〉腻F體,錐體與球面相交得到球面上的兩個面元ΔS1和ΔS2 ,設球面的電荷面密度為σ,則這兩個面元在P點激發(fā)的場強分別為

ΔE1 = k

ΔE2 = k

為了弄清ΔE1和ΔE2的大小關系,引進錐體頂部的立體角ΔΩ ,顯然

 = ΔΩ = 

所以 ΔE1 = k ,ΔE2 = k ,即:ΔE1 = ΔE2 ,而它們的方向是相反的,故在P點激發(fā)的合場強為零。

同理,其它各個相對的面元ΔS3和ΔS4 、ΔS5和ΔS6  激發(fā)的合場強均為零。原命題得證。

【模型變換】半徑為R的均勻帶電球面,電荷的面密度為σ,試求球心處的電場強度。

【解析】如圖7-6所示,在球面上的P處取一極小的面元ΔS ,它在球心O點激發(fā)的場強大小為

ΔE = k ,方向由P指向O點。

無窮多個這樣的面元激發(fā)的場強大小和ΔS激發(fā)的完全相同,但方向各不相同,它們矢量合成的效果怎樣呢?這里我們要大膽地預見——由于由于在x方向、y方向上的對稱性,Σ = Σ = 0 ,最后的ΣE = ΣEz ,所以先求

ΔEz = ΔEcosθ= k ,而且ΔScosθ為面元在xoy平面的投影,設為ΔS′

所以 ΣEz = ΣΔS′

 ΣΔS′= πR2 

【答案】E = kπσ ,方向垂直邊界線所在的平面。

〖學員思考〗如果這個半球面在yoz平面的兩邊均勻帶有異種電荷,面密度仍為σ,那么,球心處的場強又是多少?

〖推薦解法〗將半球面看成4個球面,每個球面在x、y、z三個方向上分量均為 kπσ,能夠?qū)ΨQ抵消的將是y、z兩個方向上的分量,因此ΣE = ΣEx …

〖答案〗大小為kπσ,方向沿x軸方向(由帶正電的一方指向帶負電的一方)。

【物理情形2】有一個均勻的帶電球體,球心在O點,半徑為R ,電荷體密度為ρ ,球體內(nèi)有一個球形空腔,空腔球心在O′點,半徑為R′,= a ,如圖7-7所示,試求空腔中各點的場強。

【模型分析】這里涉及兩個知識的應用:一是均勻帶電球體的場強定式(它也是來自疊加原理,這里具體用到的是球體內(nèi)部的結(jié)論,即“剝皮法則”),二是填補法。

將球體和空腔看成完整的帶正電的大球和帶負電(電荷體密度相等)的小球的集合,對于空腔中任意一點P ,設 = r1 , = r2 ,則大球激發(fā)的場強為

E1 = k = kρπr1 ,方向由O指向P

“小球”激發(fā)的場強為

E2 = k = kρπr2 ,方向由P指向O′

E1和E2的矢量合成遵從平行四邊形法則,ΣE的方向如圖。又由于矢量三角形PE1ΣE和空間位置三角形OP O′是相似的,ΣE的大小和方向就不難確定了。

【答案】恒為kρπa ,方向均沿O → O′,空腔里的電場是勻強電場。

〖學員思考〗如果在模型2中的OO′連線上O′一側(cè)距離O為b(b>R)的地方放一個電量為q的點電荷,它受到的電場力將為多大?

〖解說〗上面解法的按部就班應用…

〖答〗πkρq〔?〕。

二、電勢、電量與電場力的功

【物理情形1】如圖7-8所示,半徑為R的圓環(huán)均勻帶電,電荷線密度為λ,圓心在O點,過圓心跟環(huán)面垂直的軸線上有P點, = r ,以無窮遠為參考點,試求P點的電勢U。

【模型分析】這是一個電勢標量疊加的簡單模型。先在圓環(huán)上取一個元段ΔL ,它在P點形成的電勢

ΔU = k

環(huán)共有段,各段在P點形成的電勢相同,而且它們是標量疊加。

【答案】UP = 

〖思考〗如果上題中知道的是環(huán)的總電量Q ,則UP的結(jié)論為多少?如果這個總電量的分布不是均勻的,結(jié)論會改變嗎?

〖答〗UP =  ;結(jié)論不會改變。

〖再思考〗將環(huán)換成半徑為R的薄球殼,總電量仍為Q ,試問:(1)當電量均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?(2)當電量不均勻分布時,球心電勢為多少?球內(nèi)(包括表面)各點電勢為多少?

〖解說〗(1)球心電勢的求解從略;

球內(nèi)任一點的求解參看圖7-5

ΔU1 = k= k·= kσΔΩ

ΔU2 = kσΔΩ

它們代數(shù)疊加成 ΔU = ΔU1 + ΔU2 = kσΔΩ

而 r1 + r2 = 2Rcosα

所以 ΔU = 2RkσΔΩ

所有面元形成電勢的疊加 ΣU = 2RkσΣΔΩ

注意:一個完整球面的ΣΔΩ = 4π(單位:球面度sr),但作為對頂?shù)腻F角,ΣΔΩ只能是2π ,所以——

ΣU = 4πRkσ= k

(2)球心電勢的求解和〖思考〗相同;

球內(nèi)任一點的電勢求解可以從(1)問的求解過程得到結(jié)論的反證。

〖答〗(1)球心、球內(nèi)任一點的電勢均為k ;(2)球心電勢仍為k ,但其它各點的電勢將隨電量的分布情況的不同而不同(內(nèi)部不再是等勢體,球面不再是等勢面)。

【相關應用】如圖7-9所示,球形導體空腔內(nèi)、外壁的半徑分別為R1和R2 ,帶有凈電量+q ,現(xiàn)在其內(nèi)部距球心為r的地方放一個電量為+Q的點電荷,試求球心處的電勢。

【解析】由于靜電感應,球殼的內(nèi)、外壁形成兩個帶電球殼。球心電勢是兩個球殼形成電勢、點電荷形成電勢的合效果。

根據(jù)靜電感應的嘗試,內(nèi)壁的電荷量為-Q ,外壁的電荷量為+Q+q ,雖然內(nèi)壁的帶電是不均勻的,根據(jù)上面的結(jié)論,其在球心形成的電勢仍可以應用定式,所以…

【答案】Uo = k - k + k 。

〖反饋練習〗如圖7-10所示,兩個極薄的同心導體球殼A和B,半徑分別為RA和RB ,現(xiàn)讓A殼接地,而在B殼的外部距球心d的地方放一個電量為+q的點電荷。試求:(1)A球殼的感應電荷量;(2)外球殼的電勢。

〖解說〗這是一個更為復雜的靜電感應情形,B殼將形成圖示的感應電荷分布(但沒有凈電量),A殼的情形未畫出(有凈電量),它們的感應電荷分布都是不均勻的。

此外,我們還要用到一個重要的常識:接地導體(A殼)的電勢為零。但值得注意的是,這里的“為零”是一個合效果,它是點電荷q 、A殼、B殼(帶同樣電荷時)單獨存在時在A中形成的的電勢的代數(shù)和,所以,當我們以球心O點為對象,有

UO = k + k + k = 0

QB應指B球殼上的凈電荷量,故 QB = 0

所以 QA = -q

☆學員討論:A殼的各處電勢均為零,我們的方程能不能針對A殼表面上的某點去列?(答:不能,非均勻帶電球殼的球心以外的點不能應用定式。

基于剛才的討論,求B的電勢時也只能求B的球心的電勢(獨立的B殼是等勢體,球心電勢即為所求)——

UB = k + k

〖答〗(1)QA = -q ;(2)UB = k(1-) 。

【物理情形2】圖7-11中,三根實線表示三根首尾相連的等長絕緣細棒,每根棒上的電荷分布情況與絕緣棒都換成導體棒時完全相同。點A是Δabc的中心,點B則與A相對bc棒對稱,且已測得它們的電勢分別為UA和UB 。試問:若將ab棒取走,A、B兩點的電勢將變?yōu)槎嗌伲?/p>

【模型分析】由于細棒上的電荷分布既不均勻、三根細棒也沒有構(gòu)成環(huán)形,故前面的定式不能直接應用。若用元段分割→疊加,也具有相當?shù)睦щy。所以這里介紹另一種求電勢的方法。

每根細棒的電荷分布雖然復雜,但相對各自的中點必然是對稱的,而且三根棒的總電量、分布情況彼此必然相同。這就意味著:①三棒對A點的電勢貢獻都相同(可設為U1);②ab棒、ac棒對B點的電勢貢獻相同(可設為U2);③bc棒對A、B兩點的貢獻相同(為U1)。

所以,取走ab前  3U1 = UA

                 2U2 + U1 = UB

取走ab后,因三棒是絕緣體,電荷分布不變,故電勢貢獻不變,所以

  UA′= 2U1

                 UB′= U1 + U2

【答案】UA′= UA ;UB′= UA + UB 。

〖模型變換〗正四面體盒子由彼此絕緣的四塊導體板構(gòu)成,各導體板帶電且電勢分別為U1 、U2 、U3和U4 ,則盒子中心點O的電勢U等于多少?

〖解說〗此處的四塊板子雖然位置相對O點具有對稱性,但電量各不相同,因此對O點的電勢貢獻也不相同,所以應該想一點辦法——

我們用“填補法”將電量不對稱的情形加以改觀:先將每一塊導體板復制三塊,作成一個正四面體盒子,然后將這四個盒子位置重合地放置——構(gòu)成一個有四層壁的新盒子。在這個新盒子中,每個壁的電量將是完全相同的(為原來四塊板的電量之和)、電勢也完全相同(為U1 + U2 + U3 + U4),新盒子表面就構(gòu)成了一個等勢面、整個盒子也是一個等勢體,故新盒子的中心電勢為

U′= U1 + U2 + U3 + U4 

最后回到原來的單層盒子,中心電勢必為 U =  U′

〖答〗U = (U1 + U2 + U3 + U4)。

☆學員討論:剛才的這種解題思想是否適用于“物理情形2”?(答:不行,因為三角形各邊上電勢雖然相等,但中點的電勢和邊上的并不相等。)

〖反饋練習〗電荷q均勻分布在半球面ACB上,球面半徑為R ,CD為通過半球頂點C和球心O的軸線,如圖7-12所示。P、Q為CD軸線上相對O點對稱的兩點,已知P點的電勢為UP ,試求Q點的電勢UQ 。

〖解說〗這又是一個填補法的應用。將半球面補成完整球面,并令右邊內(nèi)、外層均勻地帶上電量為q的電荷,如圖7-12所示。

從電量的角度看,右半球面可以看作不存在,故這時P、Q的電勢不會有任何改變。

而換一個角度看,P、Q的電勢可以看成是兩者的疊加:①帶電量為2q的完整球面;②帶電量為-q的半球面。

考查P點,UP = k + U半球面

其中 U半球面顯然和為填補時Q點的電勢大小相等、符號相反,即 U半球面= -UQ 

以上的兩個關系已經(jīng)足以解題了。

〖答〗UQ = k - UP 。

【物理情形3】如圖7-13所示,A、B兩點相距2L ,圓弧是以B為圓心、L為半徑的半圓。A處放有電量為q的電荷,B處放有電量為-q的點電荷。試問:(1)將單位正電荷從O點沿移到D點,電場力對它做了多少功?(2)將單位負電荷從D點沿AB的延長線移到無窮遠處去,電場力對它做多少功?

【模型分析】電勢疊加和關系WAB = q(UA - UB)= qUAB的基本應用。

UO = k + k = 0

UD = k + k = -

U = 0

再用功與電勢的關系即可。

【答案】(1);(2)。 

【相關應用】在不計重力空間,有A、B兩個帶電小球,電量分別為q1和q2 ,質(zhì)量分別為m1和m2 ,被固定在相距L的兩點。試問:(1)若解除A球的固定,它能獲得的最大動能是多少?(2)若同時解除兩球的固定,它們各自的獲得的最大動能是多少?(3)未解除固定時,這個系統(tǒng)的靜電勢能是多少?

【解說】第(1)問甚間;第(2)問在能量方面類比反沖裝置的能量計算,另啟用動量守恒關系;第(3)問是在前兩問基礎上得出的必然結(jié)論…(這里就回到了一個基本的觀念斧正:勢能是屬于場和場中物體的系統(tǒng),而非單純屬于場中物體——這在過去一直是被忽視的。在兩個點電荷的環(huán)境中,我們通常說“兩個點電荷的勢能”是多少。)

【答】(1)k;(2)Ek1 = k ,Ek2 = k;(3)k 。

〖思考〗設三個點電荷的電量分別為q1 、q2和q3 ,兩兩相距為r12 、r23和r31 ,則這個點電荷系統(tǒng)的靜電勢能是多少?

〖解〗略。

〖答〗k(++)。

〖反饋應用〗如圖7-14所示,三個帶同種電荷的相同金屬小球,每個球的質(zhì)量均為m 、電量均為q ,用長度為L的三根絕緣輕繩連接著,系統(tǒng)放在光滑、絕緣的水平面上。現(xiàn)將其中的一根繩子剪斷,三個球?qū)㈤_始運動起來,試求中間這個小球的最大速度。

〖解〗設剪斷的是1、3之間的繩子,動力學分析易知,2球獲得最大動能時,1、2之間的繩子與2、3之間的繩子剛好應該在一條直線上。而且由動量守恒知,三球不可能有沿繩子方向的速度。設2球的速度為v ,1球和3球的速度為v′,則

動量關系 mv + 2m v′= 0

能量關系 3k = 2 k + k + mv2 + 2m

解以上兩式即可的v值。

〖答〗v = q 。

三、電場中的導體和電介質(zhì)

【物理情形】兩塊平行放置的很大的金屬薄板A和B,面積都是S ,間距為d(d遠小于金屬板的線度),已知A板帶凈電量+Q1 ,B板帶盡電量+Q2 ,且Q2<Q1 ,試求:(1)兩板內(nèi)外表面的電量分別是多少;(2)空間各處的場強;(3)兩板間的電勢差。

【模型分析】由于靜電感應,A、B兩板的四個平面的電量將呈現(xiàn)一定規(guī)律的分布(金屬板雖然很薄,但內(nèi)部合場強為零的結(jié)論還是存在的);這里應注意金屬板“很大”的前提條件,它事實上是指物理無窮大,因此,可以應用無限大平板的場強定式。

為方便解題,做圖7-15,忽略邊緣效應,四個面的電荷分布應是均勻的,設四個面的電荷面密度分別為σ1 、σ2 、σ3和σ4 ,顯然

(σ1 + σ2)S = Q1 

(σ3 + σ4)S = Q2 

A板內(nèi)部空間場強為零,有 2πk(σ1 ? σ2 ? σ3 ? σ4)= 0

A板內(nèi)部空間場強為零,有 2πk(σ1 + σ2 + σ3 ? σ4)= 0

解以上四式易得 σ1 = σ4 = 

               σ2 = ?σ3 = 

有了四個面的電荷密度,Ⅰ、Ⅱ、Ⅲ空間的場強就好求了〔如E =2πk(σ1 + σ2 ? σ3 ? σ4)= 2πk〕。

最后,UAB = Ed

【答案】(1)A板外側(cè)電量、A板內(nèi)側(cè)電量,B板內(nèi)側(cè)電量?、B板外側(cè)電量;(2)A板外側(cè)空間場強2πk,方向垂直A板向外,A、B板之間空間場強2πk,方向由A垂直指向B,B板外側(cè)空間場強2πk,方向垂直B板向外;(3)A、B兩板的電勢差為2πkd,A板電勢高。

〖學員思考〗如果兩板帶等量異號的凈電荷,兩板的外側(cè)空間場強等于多少?(答:為零。)

〖學員討論〗(原模型中)作為一個電容器,它的“電量”是多少(答:)?如果在板間充滿相對介電常數(shù)為εr的電介質(zhì),是否會影響四個面的電荷分布(答:不會)?是否會影響三個空間的場強(答:只會影響Ⅱ空間的場強)?

〖學員討論〗(原模型中)我們是否可以求出A、B兩板之間的靜電力?〔答:可以;以A為對象,外側(cè)受力·(方向相左),內(nèi)側(cè)受力·(方向向右),它們合成即可,結(jié)論為F = Q1Q2 ,排斥力!

【模型變換】如圖7-16所示,一平行板電容器,極板面積為S ,其上半部為真空,而下半部充滿相對介電常數(shù)為εr的均勻電介質(zhì),當兩極板分別帶上+Q和?Q的電量后,試求:(1)板上自由電荷的分布;(2)兩板之間的場強;(3)介質(zhì)表面的極化電荷。

【解說】電介質(zhì)的充入雖然不能改變內(nèi)表面的電量總數(shù),但由于改變了場強,故對電荷的分布情況肯定有影響。設真空部分電量為Q1 ,介質(zhì)部分電量為Q2 ,顯然有

Q1 + Q2 = Q

兩板分別為等勢體,將電容器看成上下兩個電容器的并聯(lián),必有

U1 = U2   =  ,即  = 

解以上兩式即可得Q1和Q2 。

場強可以根據(jù)E = 關系求解,比較常規(guī)(上下部分的場強相等)。

上下部分的電量是不等的,但場強居然相等,這怎么解釋?從公式的角度看,E = 2πkσ(單面平板),當k 、σ同時改變,可以保持E不變,但這是一種結(jié)論所展示的表象。從內(nèi)在的角度看,k的改變正是由于極化電荷的出現(xiàn)所致,也就是說,極化電荷的存在相當于在真空中形成了一個新的電場,正是這個電場與自由電荷(在真空中)形成的電場疊加成為E2 ,所以

E2 = 4πk(σ ? σ′)= 4πk( ? 

請注意:①這里的σ′和Q′是指極化電荷的面密度和總量;② E = 4πkσ的關系是由兩個帶電面疊加的合效果。

【答案】(1)真空部分的電量為Q ,介質(zhì)部分的電量為Q ;(2)整個空間的場強均為 ;(3)Q 。

〖思考應用〗一個帶電量為Q的金屬小球,周圍充滿相對介電常數(shù)為εr的均勻電介質(zhì),試求與與導體表面接觸的介質(zhì)表面的極化電荷量。

〖解〗略。

〖答〗Q′= Q 。

四、電容器的相關計算

【物理情形1】由許多個電容為C的電容器組成一個如圖7-17所示的多級網(wǎng)絡,試問:(1)在最后一級的右邊并聯(lián)一個多大電容C′,可使整個網(wǎng)絡的A、B兩端電容也為C′?(2)不接C′,但無限地增加網(wǎng)絡的級數(shù),整個網(wǎng)絡A、B兩端的總電容是多少?

【模型分析】這是一個練習電容電路簡化基本事例。

第(1)問中,未給出具體級數(shù),一般結(jié)論應適用特殊情形:令級數(shù)為1 ,于是

 +  =  解C′即可。

第(2)問中,因為“無限”,所以“無限加一級后仍為無限”,不難得出方程

 +  = 

【答案】(1)C ;(2)C 。

【相關模型】在圖7-18所示的電路中,已知C1 = C2 = C3 = C9 = 1μF ,C4 = C5 = C6 = C7 = 2μF ,C8 = C10 = 3μF ,試求A、B之間的等效電容。

【解說】對于既非串聯(lián)也非并聯(lián)的電路,需要用到一種“Δ→Y型變換”,參見圖7-19,根據(jù)三個端點之間的電容等效,容易得出定式——

Δ→Y型:Ca = 

          Cb = 

          Cc = 

Y→Δ型:C1 = 

         C2 = 

         C3 = 

有了這樣的定式后,我們便可以進行如圖7-20所示的四步電路簡化(為了方便,電容不宜引進新的符號表達,而是直接將變換后的量值標示在圖中)——

【答】約2.23μF 。

【物理情形2】如圖7-21所示的電路中,三個電容器完全相同,電源電動勢ε1 = 3.0V ,ε2 = 4.5V,開關K1和K2接通前電容器均未帶電,試求K1和K2接通后三個電容器的電壓Uao 、Ubo和Uco各為多少。

【解說】這是一個考查電容器電路的基本習題,解題的關鍵是要抓與o相連的三塊極板(俗稱“孤島”)的總電量為零。

電量關系:++= 0

電勢關系:ε1 = Uao + Uob = Uao ? Ubo 

          ε2 = Ubo + Uoc = Ubo ? Uco 

解以上三式即可。

【答】Uao = 3.5V ,Ubo = 0.5V ,Uco = ?4.0V 。

【伸展應用】如圖7-22所示,由n個單元組成的電容器網(wǎng)絡,每一個單元由三個電容器連接而成,其中有兩個的電容為3C ,另一個的電容為3C 。以a、b為網(wǎng)絡的輸入端,a′、b′為輸出端,今在a、b間加一個恒定電壓U ,而在a′b′間接一個電容為C的電容器,試求:(1)從第k單元輸入端算起,后面所有電容器儲存的總電能;(2)若把第一單元輸出端與后面斷開,再除去電源,并把它的輸入端短路,則這個單元的三個電容器儲存的總電能是多少?

【解說】這是一個結(jié)合網(wǎng)絡計算和“孤島現(xiàn)象”的典型事例。

(1)類似“物理情形1”的計算,可得 C = Ck = C

所以,從輸入端算起,第k單元后的電壓的經(jīng)驗公式為 Uk = 

再算能量儲存就不難了。

(2)斷開前,可以算出第一單元的三個電容器、以及后面“系統(tǒng)”的電量分配如圖7-23中的左圖所示。這時,C1的右板和C2的左板(或C2的下板和C3的右板)形成“孤島”。此后,電容器的相互充電過程(C3類比為“電源”)滿足——

電量關系:Q1′= Q3

          Q2′+ Q3′= 

電勢關系: = 

從以上三式解得 Q1′= Q3′=  ,Q2′=  ,這樣系統(tǒng)的儲能就可以用得出了。

【答】(1)Ek = ;(2) 。

〖學員思考〗圖7-23展示的過程中,始末狀態(tài)的電容器儲能是否一樣?(答:不一樣;在相互充電的過程中,導線消耗的焦耳熱已不可忽略。)

☆第七部分完☆

查看答案和解析>>

同步練習冊答案