如圖所示,質(zhì)量為M且足夠長的木板在光滑的水平面上,其右端有一質(zhì)量為m、可視為質(zhì)點(diǎn)的滑塊,滑塊與木板間的動(dòng)摩擦因數(shù)為μ。勁度系數(shù)為k的水平輕彈簧的右端O固定不動(dòng),其自由端A與滑塊之間的距離為L,F(xiàn)給木板以水平向右的瞬時(shí)速度v0,滑塊將由靜止開始向右運(yùn)動(dòng),與彈簧接觸后經(jīng)過時(shí)間t,滑塊向右運(yùn)動(dòng)的速度達(dá)到最大,設(shè)滑塊的速度始終小于木板的速度,彈簧的形變是在彈性限度內(nèi),重力加速度大小為g,不計(jì)空氣阻力。求:
(1)滑塊剛接觸彈簧時(shí)滑塊的速度v1大小和木板的速度v2大;
(2)滑塊向右運(yùn)動(dòng)的速度達(dá)到最大值的過程中,彈簧對(duì)滑塊所做的功W;
(3)滑塊向右運(yùn)動(dòng)的速度最大值υm及其速度最大時(shí)滑塊與木板的右端之間的距離s。
【標(biāo)準(zhǔn)解答】(1)滑塊接觸彈簧之前,在滑動(dòng)摩擦力作用下由靜止開始做勻加速直線運(yùn)動(dòng)了L距離,由動(dòng)能定理:
μmgL = mv12·································································································· ①(2分)
得:v1 = ······························································································ ②(1分)
對(duì)滑塊和木板組成的系統(tǒng),由動(dòng)量守恒定律:
Mv0 = Mv2 + mv1································································································ ③(2分)
得:v2 = v0 – ·················································································· ④(1分)
(2)滑塊接觸彈簧之后向右運(yùn)動(dòng)的過程中,當(dāng)滑塊受到的滑動(dòng)摩擦力與彈簧的彈力平衡時(shí),滑塊的速度達(dá)到最大,此時(shí)彈簧被壓縮的長度為x,則:
μmg = kx
得x = ······································································································· ⑤(2分)
由于彈簧的彈力與彈簧被壓縮的長度成正比,所以有
W = – kx · x = – ················································································ ⑥(2分)
(3)滑塊向右運(yùn)動(dòng)的速度達(dá)到最大值時(shí),設(shè)滑塊的最大速度為vm時(shí)木板的速度大小為v。在彈簧被壓縮的長度x的過程中,對(duì)木板由動(dòng)量定理:
– μmgt = Mv – Mv2····························································································· ⑦(2分)
得v = v0 – –
分別對(duì)滑塊和木板,由動(dòng)能定理:
μmgx + W = mvm2 – mv12············································································· ⑧(2分)
– μmg(L + x + s) = Mv2 – Mv02··································································· ⑨(2分)
得
υm = ······················································································ ⑩(1分)
s = [v02 – (v0 – – )2] – – L··························· (11)(1分)
【思維點(diǎn)拔】本題的關(guān)鍵在于平時(shí)對(duì)滑塊與滑板疊加問題的積淀,對(duì)木板在滑動(dòng)摩擦力作用做勻減速直線運(yùn)動(dòng),對(duì)滑塊在接觸彈簧之前做勻加速直線運(yùn)動(dòng),均可運(yùn)用牛頓運(yùn)動(dòng)定律及運(yùn)動(dòng)學(xué)公式計(jì)算,但對(duì)滑塊在接觸彈簧之后,所受的合外力為變力,則需用能量觀點(diǎn)解答。在接觸彈簧之前,對(duì)滑塊和木板組成的系統(tǒng),合外力為零,所以也可以根據(jù)動(dòng)量守恒定律來解答,但在接觸彈簧之后,對(duì)滑塊和木板組成的系統(tǒng),合外力不為零,所以不能根據(jù)動(dòng)量守恒定律來解答。對(duì)于彈簧彈力做功問題,由于彈簧的彈力與彈簧被壓縮的長度成線性關(guān)系,所以可以用平均力來計(jì)算彈力做功。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中物理 來源: 題型:
查看答案和解析>>
科目:高中物理 來源:2010-2011學(xué)年四川省樂山市高三第三次調(diào)研理科綜合物理部分 題型:計(jì)算題
如圖所示,質(zhì)量為M且足夠長的木板放在光滑水平面上,其右端有一質(zhì)量為m、可視為質(zhì)點(diǎn)的滑塊,滑塊與木板問的動(dòng)摩擦因數(shù)為μ。勁度系數(shù)為的水平輕彈簧的右端O固定不動(dòng),其自由端A與滑塊的距離為L,F(xiàn)給木板一水平向右的瞬時(shí)速度,滑塊將由靜止開始向右運(yùn)動(dòng),與彈簧接觸后經(jīng)過一段時(shí)間向右運(yùn)動(dòng)的速度到達(dá)最大,且滑塊的速度始終小于木板的速度(彈簧在形變?cè)趶椥韵薅葍?nèi),重力加速度大小為g,不計(jì)空氣阻力)求:
(1)滑塊剛接觸彈簧對(duì)滑塊的速度大小v1和木板的速度大小
(2)滑塊向右運(yùn)動(dòng)的速度到達(dá)最大值的過程中,彈簧的壓縮量及彈簧對(duì)滑塊所做的功W(已知彈簧對(duì)滑塊所做的功可用公式計(jì)算,其中表示彈簧被壓縮的長度)
(3)滑塊向右運(yùn)動(dòng)的最大速度。
查看答案和解析>>
科目:高中物理 來源:2011年四川省成都市石室中學(xué)高考物理二模試卷(解析版) 題型:解答題
查看答案和解析>>
科目:高中物理 來源: 題型:
如圖所示,質(zhì)量為M且足夠長的木板放在光滑水平面上,其右端有一質(zhì)量為m、可視為質(zhì)點(diǎn)的滑塊,滑塊與木板問的動(dòng)摩擦因數(shù)為μ。勁度系數(shù)為的水平輕彈簧的右端O固定不動(dòng),其自由端A與滑塊的距離為L,F(xiàn)給木板一水平向右的瞬時(shí)速度,滑塊將由靜止開始向右運(yùn)動(dòng),與彈簧接觸后經(jīng)過一段時(shí)間向右運(yùn)動(dòng)的速度到達(dá)最大,且滑塊的速度始終小于木板的速度(彈簧在形變?cè)趶椥韵薅葍?nèi),重力加速度大小為g,不計(jì)空氣阻力)求:
(1)滑塊剛接觸彈簧對(duì)滑塊的速度大小v1和木板的速度大小
(2)滑塊向右運(yùn)動(dòng)的速度到達(dá)最大值的過程中,彈簧的壓縮量及彈簧對(duì)滑塊所做的功W(已知彈簧對(duì)滑塊所做的功可用公式計(jì)算,其中表示彈簧被壓縮的長度)
(3)滑塊向右運(yùn)動(dòng)的最大速度。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com