分析 (1)明確實驗原理,從而確定實驗中的注意事項;
(2)根據(jù)動量守恒定律及機械能守恒定律可求得動量守恒及機械能守恒的表達式;
(3)小球落在斜面上,根據(jù)水平位移關(guān)系和豎直位移的關(guān)系,求出初速度與距離的表達式,從而得出動量守恒的表達式,再根據(jù)機械能守恒可分析應(yīng)驗證機械能守恒的表達式;
(4)由于兩球從同一高度下落,故下落時間相同,所以水平向速度之比等于兩物體水平方向位移之比,然后由動量守恒定律與機械能守恒分析答題.
解答 解:(1)A、為保證小球做平拋運動的初速度相等,應(yīng)使小球每次從斜槽上相同的位置自由滑下,故A正確;
B、實驗時只要把小球從斜槽的同一位置由靜止滑下即可保證小球做平拋運動的初速度相等,不需要斜槽軌道光滑,故B錯誤;
C、要保證小球離開軌道時的速度是水平的,斜槽軌道末端必須水平,故C正確;
D、為了保證入射小球不會被反彈,故必須保證入射球的質(zhì)量大于被碰球的質(zhì)量,故D正確.
故選:ACD.
(2)因為平拋運動的時間相等,則水平位移可以代表速度,OP是A球不與B球碰撞平拋運動的位移,該位移可以代表A球碰撞前的速度,OM是A球碰撞后平拋運動的位移,該位移可以代表碰撞后A球的速度,ON是碰撞后B球的水平位移,該位移可以代表碰撞后B球的速度,當所測物理量滿足表達式m1•OP=m1•OM+m2•ON,說明兩球碰撞遵守動量守恒定律,
(2)碰撞前,m1落在圖中的P′點,設(shè)其水平初速度為v1.小球m1和m2發(fā)生碰撞后,m1的落點在圖中M′點,設(shè)其水平初速度為v1′,m2的落點是圖中的N′點,設(shè)其水平初速度為v2. 設(shè)斜面BC與水平面的傾角為α,
由平拋運動規(guī)律得:Lp′sinα=$\frac{1}{2}$gt2,LEcosα=v1t
解得v1=$\sqrt{\frac{gL_{E}cos^{2}α}{2sinα}}$.
同理v1′=$\sqrt{\frac{gL_{D}cos^{2}α}{2sinα}}$,
v2=$\sqrt{\frac{gL_{F}cos^{2}α}{2sinα}}$,
可見速度正比于$\sqrt{l}$.
所以只要驗證m1$\sqrt{l_{E}}$=m1$\sqrt{l_{D}}$+m2$\sqrt{l_{F}}$即可.
如果為彈性碰撞,則有:
$\frac{1}{2}$m1v12=$\frac{1}{2}$m1v'12+$\frac{1}{2}$m2v22
代入速度表達式可得:
m1LE=m1LD+m2LF
故只需驗證為彈性碰撞;
(4)小球做平拋運動,在豎直方向上:h=$\frac{1}{2}$gt2,平拋運動時間:t=$\sqrt{\frac{2h}{g}}$,
設(shè)軌道末端到木條的水平位置為x,小球做平拋運動的初速度:
v1=$\frac{x}{\sqrt{\frac{h_{2}}{g}}$,v1′=$\frac{x}{\sqrt{\frac{h_{1}}{g}}$;v2=$\frac{x}{\sqrt{\frac{h_{3}}{g}}$,
如果碰撞過程動量守恒,則:m1v1=m1v1′+m2v2,
代入速度解得:
$\frac{m_{1}}{\sqrt{h_{2}}$=$\frac{m_{1}}{\sqrt{h_{1}}$+$\frac{m_{1}}{\sqrt{h_{3}}$;
故應(yīng)驗證$\frac{m_{1}}{\sqrt{h_{2}}$=$\frac{m_{1}}{\sqrt{h_{1}}$+$\frac{m_{1}}{\sqrt{h_{3}}$即可證明動量守恒.
故答案為:(1)ACD;(2)m1•OP=m1•OM+m2•ON;(3)m1$\sqrt{l_{E}}$=m1$\sqrt{l_{D}}$+m2$\sqrt{l_{F}}$;m1LE=m1LD+m2LF
(4)$\frac{m_{1}}{\sqrt{h_{2}}$=$\frac{m_{1}}{\sqrt{h_{1}}$+$\frac{m_{1}}{\sqrt{h_{3}}$
點評 該題考查用“碰撞試驗器”驗證動量守恒定律,該實驗中,將處用平拋運動驗證動量守恒的所有方法均進行了考查,要注意明確平拋運動的性質(zhì),知道水平方向為勻速運動,豎直方向做自由落體運動,要正確分析兩個方向上運動的規(guī)律應(yīng)用.
科目:高中物理 來源: 題型:選擇題
A. | 衛(wèi)星距地面的高度為$\root{3}{\frac{GM{T}^{2}}{2{π}^{2}}}$ | |
B. | 衛(wèi)星的運行速度等于第一宇宙速度 | |
C. | 衛(wèi)星運行時受到的向心力大小為G$\frac{Mm}{{R}^{2}}$ | |
D. | 衛(wèi)星運行的向心加速度小于地球表面的重力加速度 |
查看答案和解析>>
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 從光照射到金屬表面到發(fā)射出光電子之間的時間間隔明顯增加 | |
B. | 單位時間內(nèi)從金屬表面逸出的光電子的數(shù)目減少 | |
C. | 逸出的光電子的最大初動能減小 | |
D. | 有可能不再產(chǎn)生光電效應(yīng) |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 嫦娥四號繞月運行的速度為$\sqrt{\frac{{r}^{2}g}{R}}$ | B. | 月球的平均密度為$\frac{3π{r}^{3}}{G{T}^{2}{R}^{3}}$ | ||
C. | 月球的平均密度$\frac{3π}{G{T}^{2}}$ | D. | 嫦娥四號繞月運行的速度為$\frac{2πr}{T}$ |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 加速度先減小后增大 | |
B. | 到C處時速率最大 | |
C. | 機械能先減小后增大 | |
D. | Q、q、彈簧與地球組成的系統(tǒng)的勢能先減小后增大 |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 金屬棒ab做加速度減小的變加速直線運動 | |
B. | 金屬棒ab兩端的電壓始終為$\frac{r}{R+r}$Blv | |
C. | 燈泡的亮度先逐漸變亮后保持不變 | |
D. | 回路中產(chǎn)生的焦耳熱為$\frac{mgq(R+r)}{BL}$sinθ-$\frac{1}{2}$mv2 |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 電源的輸出功率增大 | B. | 電源的工作效率降低 | ||
C. | L1最亮,L4最暗 | D. | L1最暗,L4比L2亮 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com