精英家教網(wǎng)如圖所示,圖中左邊有一對(duì)平行金屬板,兩板相距為d,電壓為U.兩板之間有勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B0,方向與金屬板面平行并垂直于紙面朝里;圖中右邊有一半徑為R、圓心為O的圓形區(qū)域,區(qū)域內(nèi)也存在勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B,方向垂直于紙面朝里.一電荷量為q的正離子沿平行于金屬板面、垂直于磁場(chǎng)的方向射入平行金屬板之間,沿同一方向射出平行金屬板之間的區(qū)域,并沿直徑PQ方向射入磁場(chǎng)區(qū)域,最后從圓形區(qū)域邊界上的G點(diǎn)射出,已知弧QG所對(duì)應(yīng)的圓心角為θ.離子重力不計(jì).求:
(1)離子速度的大;
(2)離子在圓形磁場(chǎng)區(qū)域內(nèi)做圓周運(yùn)動(dòng)的半徑;
(3)離子的質(zhì)量.
分析:(1)對(duì)離子直線運(yùn)動(dòng)過(guò)程進(jìn)行受力分析,受到洛倫茲力和電場(chǎng)力作用,且二力平衡;結(jié)合勻強(qiáng)電場(chǎng)的場(chǎng)強(qiáng)與電勢(shì)差的關(guān)系式,可求出離子在電場(chǎng)中的運(yùn)動(dòng)速度;
(2)圓周運(yùn)動(dòng)過(guò)程,洛倫茲力提供向心力,根據(jù)牛頓第二定律列式求解軌道半徑;
(3)根據(jù)題意畫出離子在磁場(chǎng)中運(yùn)動(dòng)的軌跡草圖,充分利用幾何關(guān)系,結(jié)合離子在磁場(chǎng)中的運(yùn)動(dòng)半徑公式,即可求出離子的質(zhì)量.
解答:解:(1)由題設(shè)知,離子在平行金屬板之間做勻速直線運(yùn)動(dòng),將受到的向上的洛倫茲力和向下的電場(chǎng)力,由題意知二力平衡,有:
qvB0=qE0 …①
式中,v是離子運(yùn)動(dòng)速度的大。瓻0是平行金屬板之間的勻強(qiáng)電場(chǎng)的強(qiáng)度,有:
E0=
U
d
      …②
①②兩式聯(lián)立得:
v=
U
B0d
     …③
(2)由題設(shè),離子從磁場(chǎng)邊界上的點(diǎn)G穿出,離子運(yùn)動(dòng)的圓周的圓心O′必在過(guò)P點(diǎn)垂直于PQ的直線上,且在PG的垂直一平分線上(見(jiàn)圖).精英家教網(wǎng)
由幾何關(guān)系有:
r=Rtanα   …④
式中,α是OO'與直徑EF的夾角,由幾何關(guān)系得:
2α+θ=π    …⑤
則離子運(yùn)動(dòng)半徑:
r=Rcot
θ
2
   …⑥
(3)在圓形磁場(chǎng)區(qū)域,離子做勻速圓周運(yùn)動(dòng),洛倫茲力提供向心力,由洛倫茲力公式和牛頓第二定律有:
qvB=m
v2
r
  …⑦
式中,m和r分別是離子的質(zhì)量和它做圓周運(yùn)動(dòng)的半徑.
聯(lián)立⑥⑦兩式,解得:
m=
qB0dBRcot
θ
2
U

答:(1)離子速度的大小為
U
B0d
;
(2)離子在圓形磁場(chǎng)區(qū)域內(nèi)做圓周運(yùn)動(dòng)的半徑為Rcot
θ
2

(3)離子的質(zhì)量為
qB0dBRcot
θ
2
U
點(diǎn)評(píng):該題考查了帶電粒子在勻強(qiáng)電場(chǎng)和勻強(qiáng)磁場(chǎng)中的運(yùn)動(dòng),在混合場(chǎng)中要注意對(duì)離子的受力分析;在磁場(chǎng)中要掌握住軌道半徑公式、周期公式,畫出粒子的運(yùn)動(dòng)軌跡后,半徑和偏轉(zhuǎn)角的幾何關(guān)系就比較明顯了.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中物理 來(lái)源: 題型:

精英家教網(wǎng)有許多大小不同的氣球漂浮在空氣中,如圖所示,圖中左邊P為固定的透風(fēng)網(wǎng)格,氣球受到水平向左的恒定風(fēng)力的作用,可作勻加速運(yùn)動(dòng).已知風(fēng)對(duì)氣球的作用力與球的最大截面成正比,即F=kS(k為一常量).對(duì)氣球來(lái)說(shuō)空間存在一個(gè)風(fēng)力場(chǎng),類比于電場(chǎng)和重力場(chǎng),請(qǐng)你完成以下問(wèn)題.
(1)請(qǐng)你定義風(fēng)力場(chǎng)的強(qiáng)度及表達(dá)式.
(2)由在該風(fēng)力場(chǎng)中風(fēng)力對(duì)氣球做功與路徑無(wú)關(guān)(氣球運(yùn)動(dòng)時(shí)所受阻力不計(jì)),可引入風(fēng)力勢(shì)能和風(fēng)力勢(shì)的概念.若以網(wǎng)格P為零勢(shì)能參考平面,寫出風(fēng)力勢(shì)能Ep和風(fēng)力勢(shì)U的表達(dá)式.
(3)寫出風(fēng)力場(chǎng)中機(jī)械能守恒定律的表達(dá)式(對(duì)氣球而言,阻力不計(jì).氣球平均密度為ρ,氣球半徑為r,第一狀態(tài)速度為v1,位置為x1;第二狀態(tài)速度為v2,位置為x2).
(4)某一氣球半徑為r=0.1m,在網(wǎng)格中1m處以v0=10m/s初速度斜向拋出,它落到網(wǎng)格P處的速度為多大(空氣密度ρ=1.3kg/m3,比例常數(shù)k=10N/m2)?

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

如圖所示,在光滑水平長(zhǎng)直軌道上,A、B兩小球之間有一處于原長(zhǎng)的輕質(zhì)彈簧,彈簧右端與B球連接,左端與A球接觸但不粘連,已知,開(kāi)始時(shí)A、B均靜止.在A球的左邊有一質(zhì)量為的小球C以初速度v0向右運(yùn)動(dòng),與A球碰撞后粘連在一起,成為一個(gè)復(fù)合球D,碰撞時(shí)間極短.接著逐漸壓縮彈簧并使B球運(yùn)動(dòng).經(jīng)過(guò)一段時(shí)間后,D球與彈簧分離(彈簧始終處于彈性限度內(nèi)).

(1) 上述過(guò)程中,彈簧的最大彈性勢(shì)能是多少?

(2) 當(dāng)彈簧恢復(fù)原長(zhǎng)時(shí)B球速度是多大?

(3) 若開(kāi)始時(shí)在B球右側(cè)某位置固定一塊擋板(圖中未畫出),在D球與彈簧分離前使B球與擋板發(fā)生碰撞,并在碰后立即將擋板撤走,設(shè)B球與擋板碰撞時(shí)間極短,碰后B球速度大小不變,但方向相反.試求出此后彈簧的彈性勢(shì)能最大值的范圍.

 

查看答案和解析>>

科目:高中物理 來(lái)源:2015屆山東省威海市高二上學(xué)期期末考試物理試卷(解析版) 題型:計(jì)算題

14分)如圖所示,圖中左邊有一對(duì)平行金屬板,兩板相距為d,電壓為U。兩板之間有勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B0,方向與金屬板面平行并垂直于紙面朝里;圖中右邊有一半徑為R、圓心為O的圓形區(qū)域,區(qū)域內(nèi)也存在勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B,方向垂直于紙面朝里。一電荷量為q的正離子沿平行于金屬板面、垂直于磁場(chǎng)的方向射入平行金屬板之間,沿同一方向射出平行金屬板之間的區(qū)域,并沿直徑PQ方向射入磁場(chǎng)區(qū)域,最后從圓形區(qū)域邊界上的G點(diǎn)射出,已知弧QG所對(duì)應(yīng)的圓心角為。離子重力不計(jì)。求:

1)離子速度的大;

2)離子在圓形磁場(chǎng)區(qū)域內(nèi)做圓周運(yùn)動(dòng)的半徑;

3)離子的質(zhì)量。

 

查看答案和解析>>

科目:高中物理 來(lái)源: 題型:

如圖所示,圖中左邊有一對(duì)平行金屬板,兩板相距為d,電壓為U。兩板之間有勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B0,方向與金屬板面平行并垂直于紙面朝里;圖中右邊有一半徑為R、圓心為O的圓形區(qū)域,區(qū)域內(nèi)也存在勻強(qiáng)磁場(chǎng),磁感應(yīng)強(qiáng)度大小為B,方向垂直于紙面朝里。一電荷量為q的正離子沿平行于金屬板面、垂直于磁場(chǎng)的方向射入平行金屬板之間,沿同一方向射出平行金屬板之間的區(qū)域,并沿直徑PQ方向射入磁場(chǎng)區(qū)域,最后從圓形區(qū)域邊界上的G點(diǎn)射出,已知弧QG所對(duì)應(yīng)的圓心角為。離子重力不計(jì)。求:

(1)離子速度的大。

(2)離子在圓形磁場(chǎng)區(qū)域內(nèi)做圓周運(yùn)動(dòng)的半徑;

(3)離子的質(zhì)量。

 


查看答案和解析>>

同步練習(xí)冊(cè)答案