精英家教網 > 高中物理 > 題目詳情
17.如圖所示,兩足夠長的平行光滑的金屬導軌MN、PQ相距為L=1m,導軌平面與水平面夾角α=300,導軌電阻不計.磁感應強度為B1=2T的勻強磁場垂直導軌平面向上,長為L=1m的金屬棒ab垂直于MN、PQ放置在導軌上,且始終與導軌接觸良好,金屬棒的質量為m1=2kg、電阻為R1=1Ω.兩金屬導軌的上端連接右側電路,電路中通過導線接一對水平放置的平行金屬板,兩板間的距離和板長均為d=0.5m,定值電阻為R2=3Ω,現(xiàn)閉合開關S并將金屬棒由靜止釋放,重力加速度為g=10m/s2,試求:

(1)金屬棒下滑的最大速度為多大?
(2)當金屬棒下滑達到穩(wěn)定狀態(tài)時,R2消耗的電功率P為多少?
(3)當金屬棒穩(wěn)定下滑時,在水平放置的平行金屬間加一垂直于紙面向里的勻強磁場B2=1.5T,在下板的右端且非?拷掳宓奈恢糜幸毁|量為m2=6×10-4kg、帶電量為q=-2×10-4C的液滴以初速度v水平向左射入兩板間,該液滴可視為質點.要使帶電粒子能從金屬板間射出,初速度v應滿足什么條件?(不計空氣阻力)

分析 (1)當金屬棒勻速下滑時速度最大,根據共點力的平衡條件結合閉合電路的歐姆定律、法拉第電磁感應定律求解;
(2)整個回路消耗的電功率為P=m1gsinα•vm,根據串聯(lián)電路的特點求解R2消耗的電功率;
(3)當金屬棒穩(wěn)定下滑時,求出R2兩端的電壓,分析粒子的電場力和重力的關系,確定粒子在磁場中做勻速圓周運動,根據帶電粒子從左上方邊界.右上方邊界射出的情況,畫出軌跡,根據幾何關系求解半徑,根據洛倫茲力提供向心力可得速度大小范圍.

解答 解:(1)當金屬棒勻速下滑時速度最大,設最大速度為vm,
根據共點力的平衡條件可得:m1gsinα=B1IL,
而I=$\frac{E}{{R}_{1}+{R}_{2}}=\frac{{B}_{1}L{v}_{m}}{{R}_{1}+{R}_{2}}$,
所以有:m1gsinα=$\frac{{{B}_{1}}^{2}{L}^{2}{v}_{m}}{{R}_{1}+{R}_{2}}$,
解得:vm=10m/s;
(2)整個回路消耗的電功率為P=m1gsinα•vm=2×10×0.5×10W=100W,
R2消耗的電功率為:P2=$\frac{{R}_{2}}{{R}_{1}+{R}_{2}}P=\frac{3}{1+3}×100W=75W$;
(3)當金屬棒穩(wěn)定下滑時,R2兩端的電壓為U2,則:
${U}_{2}=\frac{{B}_{1}L{v}_{m}}{{R}_{1}+{R}_{2}}•{R}_{2}=\frac{2×1×10}{4}×3V=15V$,上極板帶正電;
電場力為:$\frac{q{U}_{2}}yw9lcev$=$\frac{2×1{0}^{-4}×15}{0.5}N=6×1{0}^{-3}N$,
重力為m2g=6×10-3N,所以帶電粒子進入磁場做勻速圓周運動;
當帶電粒子從左上方邊界射出時速度為v1,半徑為r1,軌跡如圖所示,

根據幾何關系可得r1=d=0.5m,
根據洛倫茲力提供向心力可得:qv1B2=m2$\frac{{v}_{1}^{2}}{{r}_{1}}$,
解得:v1=0.25m/s;
同理可得,當帶電粒子從右上方邊界射出時速度為v2,半徑為r2,
根據幾何關系可得r2=$\frac{1}{2}$=0.25m,
根據洛倫茲力提供向心力可得:qv2B2=m2$\frac{{v}_{2}^{2}}{{r}_{2}}$,
解得:v1=0.125m/s;
所以速度范圍為v≥0.25m/s或v≤0.125m/s;
答:(1)金屬棒下滑的最大速度為10m/s;
(2)當金屬棒下滑達到穩(wěn)定狀態(tài)時,R2消耗的電功率P為75W;
(3)速度范圍為v≥0.25m/s或v≤0.125m/s.

點評 對于電磁感應問題研究思路常常有兩條:一條從力的角度,重點是分析安培力作用下導體棒的平衡問題,根據平衡條件列出方程;另一條是能量,分析涉及電磁感應現(xiàn)象中的能量轉化問題,根據動能定理、功能關系等列方程求解;對于帶電粒子在磁場中的運動情況分析,一般是確定圓心位置,根據幾何關系求半徑,結合洛倫茲力提供向心力求解未知量;根據周期公式結合軌跡對應的圓心角求時間.

練習冊系列答案
相關習題

科目:高中物理 來源: 題型:多選題

7.如圖所示,ABCD為固定的水平光滑矩形金屬導軌,AB間距離為L,左右兩端均接有阻值為R的電阻,處在方向豎直向下、磁感應強度大小為B的勻強磁場中,質量為m、長為L的導體棒MN放在導軌上.甲、乙兩根相同的輕質彈簧一端均與MN棒中點固定連接,另一端均被固定,MN棒始終與導軌垂直并保持良好接觸,導軌與MN棒的電阻均忽略不計.初始時刻,兩彈簧恰好處于自然長度,MN棒具有水平向左的初速度v0,經過一段時間,MN棒第一次運動至最右端,這一過程中AB間電阻R上產生的焦耳熱為Q,則( 。
A.初始時刻棒受到安培力大小為$\frac{2{B}^{2}{L}^{2}{v}_{0}}{R}$
B.MN棒最終停在初位置處
C.當棒再次回到初始位置時,AB間電阻R的功率為$\frac{{B}^{2}{L}^{2}{{v}_{0}}^{2}}{R}$
D.當棒第一次到達最右端時,甲彈簧具有的彈性勢能為Ep=$\frac{1}{4}$mv02-Q

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

8.如圖甲所示,abcd是位于豎直平面內的正方形閉合金屬線圈,在金屬線圈的下方有一磁感應強度為B的勻強磁場區(qū)域,MN和M′N′是勻強磁場區(qū)域的水平邊界,邊界的寬度為S,并與線框的bc邊平行,磁場方向與線框平面垂直.現(xiàn)讓金屬線框由距MN的某一高度從靜止開始下落,圖乙是金屬線框由開始下落到完全穿過勻強磁場區(qū)域的v-t圖象(其中OA、BC、DE相互平行).已知金屬線框的邊長為L(L<S)、質量為m,電阻為R,當地的重力加速度為g,圖象中坐標軸上所標出的字母v1、v2、t1、t2、t3、t4均為已知量.(下落過程中bc邊始終水平)根據題中所給條件,以下說法正確的是( 。
A.t2是線框全部進入磁場瞬間,t4是線框全部離開磁場瞬間
B.從bc邊進入磁場起一直到ad邊離開磁場為止,感應電流所做的功為mgS
C.V1的大小可能為$\frac{mgR}{{B}^{2}{L}^{2}}$
D.線框穿出磁場過程中流經線框橫截面的電荷量比線框進入磁場過程中流經框橫截面的電荷量多

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

5.電吉他之所以能以其獨特的魅力吸引較多的音樂愛好者,是因為它的每一根琴弦下面都安裝了一種叫作“拾音器”的裝置,能將琴弦的振動轉化為電信號,電信號經擴音器放大,再經過揚聲器就能播出優(yōu)美的音樂.如圖是“拾音器”的結構示意圖,多匝繞制的線圈置于永久磁鐵與鋼質的琴弦之間,當琴弦沿著線圈振動時,線圈中就會產生感應電流.關于感應電流,以下說法正確的是( 。
A.琴弦振動時,線圈中產生的感應電流是變化的
B.琴弦振動時,線圈中產生的感應電流大小變化,方向不變
C.琴弦振動時,線圈中產生的感應電流大小和方向都會發(fā)生變化
D.琴弦振動時,線圈中產生的感應電流大小不變,方向變化

查看答案和解析>>

科目:高中物理 來源: 題型:多選題

12.如圖所示,相距為d的兩條水平虛線L1、L2之間是方向水平向里的勻強磁場,磁感應強度為B,正方形線圈abcd邊長為L(L<d),質量為m,電阻為R,將線圈在磁場上方高h處靜止釋放,cd邊剛進入磁場時速度為v0,cd邊剛離開磁場時速度也為v0,則線圈穿越磁場的過程中(從cd邊剛進入磁場起一直到ab邊離開磁場為止)( 。
A.感應電流所做的功為mgdB.感應電流所做的功為2mgd
C.線圈的最小速度可能為$\frac{mgR}{{B}^{2}{L}^{2}}$D.線圈的最小速度一定為$\sqrt{2g(h+L-d)}$

查看答案和解析>>

科目:高中物理 來源: 題型:計算題

2.(1)開普勒第三定律指出:行星繞太陽運動的橢圓軌道的半長軸a的三次方與它的公轉周期T的二次方成正比,即$\frac{{a}^{3}}{{T}^{2}}$=k,k是一個對所有行星都相同的常量,將行星繞太陽的運動按圓周運動處理,請你推導出太陽系中該常量k的表達式.已知引力常量為G,太陽的質量為M
(2)開普勒定律不僅適用于太陽系,它對一切具有中心天體的引力系統(tǒng)都成立.已知火星半徑是地球半徑的$\frac{1}{2}$,質量是地球質量的$\frac{1}{9}$,地球表面重力加速度是g;
①已知圍繞地球表面做勻速圓周運動的衛(wèi)星周期為T0,則圍繞火星表面做勻速圓周運動的探測器的周期為多大?
②某人在地球上向上跳起的最大高度為h,若不考慮其它因素的影響,則他在火星上向上跳起的最大高度為多大?

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

9.太陽神車由四腳的支架吊著一個巨大的擺錘擺動,游客被固定在擺下方的大圓盤A上,如圖所示.擺錘的擺動幅度每邊可達120°.6臺大功率的異步驅動電機同時啟動,為游客創(chuàng)造4.3g的加速度,最高可飛躍至15層樓高的高空.如果不考慮圓盤A的自轉,根據以上信息,以下說法中正確的是( 。
A.當擺錘擺至最高點的瞬間,游客受力平衡
B.當擺錘擺至最高點時,游客可體驗最大的加速度
C.當擺錘在下擺的過程中,擺錘的機械能一定不守恒
D.當擺錘在上擺過程中游客體驗超重,下擺過程游客體驗失重

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

6.如圖所示為某汽車在平直公路上啟動時發(fā)動機功率P隨時間t變化的圖象.P0為發(fā)動機的額定功率.已知在t2時刻汽車的速度已經達到最大vm.汽車受到的空氣阻力與地面摩擦力之和隨速度增大而增大.由此可得( 。
A.在0~t1時間內,汽車一定做勻加速運動
B.在t1~t2時間內,汽車一定做勻速運動
C.在t1~t3時間內,汽車一定做勻速運動
D.在t3時刻,汽車速度一定等于vm

查看答案和解析>>

科目:高中物理 來源: 題型:選擇題

7.圖為一傾角θ=37°的足夠長的斜面,一質量m=1Kg的物體處在斜面底端A點,物體與斜面間的動摩擦因數μ=0.50.t=0時刻,給物體一沿著斜面的初速度υ0=4.0m/s,經0.6s恰好經過B點,g取10m/s2,則AB之間的距離是( 。
A.0.80mB.0.76mC.0.60mD.0.54m

查看答案和解析>>

同步練習冊答案