分析 (1)a、根據(jù)胡克定律即可寫出出小球偏離平衡位置的位移大小為x時合外力F合的表達式;
b.根據(jù)小球做簡諧運動的周期即可寫出.
(2)a、由玻意爾定律分別寫出兩部分氣體的壓強的表達式,然后即可求出;
b、求出活塞的受力與位移之間的關系公式,然后即可做出判斷.
解答 解:(1)a.由胡克定律可得,小球受到的合外力:F合=-(k1+k2)x
b.彈簧中子振動的周期公式與彈簧的勁度系數(shù)有關,公式為:T=$2π\(zhòng)sqrt{\frac{m}{{k}_{1}+{k}_{2}}}$
(2)a.對左邊氣體,由玻意爾定律得:P0LS=P1(L+x)S
所以:P1=$\frac{L}{L+x}•{P}_{0}$
同理對右邊氣體,由玻-馬定律得:P0LS=P2(L-x)S
所以:P2=$\frac{L}{L-x}•{P}_{0}$
所以:$\frac{{P}_{1}}{{P}_{2}}$=$\frac{L-x}{L+x}$
b.活塞在運動到距離平衡位置的位移為x時,活塞受到的合力等于兩部分氣體壓力的差,即:
F合=P1S-P2S
聯(lián)立得:F合=$\frac{{P}_{0}SL}{L+x}$-$\frac{{P}_{0}SL}{L-x}$=$-\frac{2{P}_{0}SLx}{{L}^{2}-{x}^{2}}$
因為x遠小于L,所以:F合=$-\frac{2{P}_{0}SLx}{{L}^{2}-{x}^{2}}$≈$-\frac{2{P}_{0}S}{L}•x$=-kx
其中k=$-\frac{2{P}_{0}S}{L}$為一定值,所以在A遠小于L的條件下,活塞的運動可視為簡諧運動.
答:(1)a.小球偏離平衡位置的位移大小為x時合外力F合的表達式為F合=-(k1+k2)x;
b.小球做簡諧運動的周期為$2π\(zhòng)sqrt{\frac{m}{{k}_{1}+{k}_{2}}}$.
(2)活塞的位移為x時兩邊氣體的壓強P1和P2比值為$\frac{L-x}{L+x}$;
b.證明見上.
點評 該題結合玻意爾定律考查簡諧振動的受力特點,解答的關鍵是正確理解活塞受到的合力等于兩部分氣體壓力的差.
科目:高中物理 來源: 題型:填空題
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 加速度a=$\frac{F}{m}$ | B. | 功率P=$\frac{W}{t}$ | C. | 電場強度E=$\frac{F}{q}$ | D. | 電勢ϕ=$\frac{{E}_{P}}{q}$ |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 在下落相等的高度內(nèi),速度的改變量相等 | |
B. | 在下落相等的高度內(nèi),動能的改變量相等 | |
C. | 在相等的時間間隔內(nèi),動能的改變量相等 | |
D. | 在相等的時間間隔內(nèi),速度的改變量相等 |
查看答案和解析>>
科目:高中物理 來源: 題型:多選題
A. | 該衛(wèi)星的發(fā)射速度必定小于11.2 km/s | |
B. | 衛(wèi)星在軌道上運行不受重力 | |
C. | 在軌道I上,衛(wèi)星在P點的速度大于在Q點的速度 | |
D. | 衛(wèi)星在Q點通過加速實現(xiàn)由軌道I進入軌道Ⅱ |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | F1和F4是一對作用力和反作用力 | B. | F1和F2是一對作用力和反作用力 | ||
C. | F2和F3是一對作用力和反作用力 | D. | F3和F4是一對作用力和反作用力 |
查看答案和解析>>
科目:高中物理 來源: 題型:選擇題
A. | 力傳感器 | B. | 光傳感器 | C. | 位移傳感器 | D. | 溫度傳感器 |
查看答案和解析>>
科目:高中物理 來源: 題型:計算題
查看答案和解析>>
科目:高中物理 來源: 題型:計算題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com