【題目】已知函數(shù)().
(Ⅰ)若在處的切線過點,求的值;
(Ⅱ)若恰有兩個極值點,().
(ⅰ)求的取值范圍;
(ⅱ)求證:.
【答案】(Ⅰ) (Ⅱ) (ⅰ) (ⅱ)見證明
【解析】
(Ⅰ)對函數(shù)進(jìn)行求導(dǎo),然后求出在處的切線的斜率,求出切線方程,把點代入切線方程中,求出的值;
(Ⅱ) (ⅰ) ,,,分類討論函數(shù)的單調(diào)性;
當(dāng)時,可以判斷函數(shù)沒有極值,不符合題意;
當(dāng)時,可以證明出函數(shù)有兩個極值點,,故可以求出的取值范圍;
由(ⅰ)知在上單調(diào)遞減,,且,
由得,,又,
.
法一:先證明()成立,應(yīng)用這個不等式,利用放縮法可以證明出成立;
法二:令(),求導(dǎo),利用單調(diào)性也可以證明出
成立.
解:(Ⅰ),
又
在處的切線方程為,即
切線過點,
(Ⅱ)(ⅰ) ,,,
當(dāng)時,,在上單調(diào)遞增,無極值,不合題意,舍去
當(dāng)時,令,得,(),
或;,在上單調(diào)遞增,在上單調(diào)遞減,在上單調(diào)遞增,恰有個極值點,,符合題意,
故的取值范圍是
(ⅱ)由(ⅰ)知在上單調(diào)遞減,,且,
由得,,又,
法一:下面證明(),令(),,
在上單調(diào)遞增,,即(),
,
綜上
法二:令(),則,
在上單調(diào)遞增,,即,
綜上
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知曲線的參數(shù)方程為(為參數(shù)).以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求的普通方程和的直角坐標(biāo)方程;
(2)若過點的直線與交于,兩點,與交于,兩點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報道,某公司的33名職工的月工資(以元為單位)如下:
職務(wù) | 董事長 | 副董事長 | 董事 | 總經(jīng)理 | 經(jīng)理 | 管理員 | 職員 |
人數(shù) | 1 | 1 | 2 | 1 | 5 | 3 | 20 |
工資 | 5500 | 5500 | 3500 | 3000 | 2500 | 2000 | 1500 |
(1)求該公司職工月工資的平均數(shù)(精確到元);
(2)假設(shè)副董事長的工資從5000元提升到20000元,董事長的工資從5500元提升到30000元,那么新的平均數(shù)又是什么?(精確到元)
(3)你認(rèn)為工資的平均數(shù)能反映這個公司員工的工資水平嗎?結(jié)合此問題談一談你的看法.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,點的坐標(biāo)為,點在拋物線上,且滿足,(為坐標(biāo)原點).
(1)求拋物線的方程;
(2)過點作斜率乘積為1的兩條不重合的直線,且與拋物線交于兩點,與拋物線交于兩點,線段的中點分別為,求證:直線過定點,并求出定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】北京、張家口2022年冬奧會申辦委員會在俄羅斯索契舉辦了發(fā)布會,某公司為了競標(biāo)配套活動的相關(guān)代言,決定對旗下的某商品進(jìn)行一次評估,該商品原來每件售價為25元,年銷售8萬件.
(1)據(jù)市場調(diào)查,若價格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價最多為多少元?
(2)為了抓住申奧契機(jī),擴(kuò)大該商品的影響力,提高年銷售量.公司決定立即對該商品進(jìn)行全面技術(shù)革新和營銷策略改革,并提高定價到元.公司擬投入萬作為技改費用,投入50萬元作為固定宣傳費用,投入萬元作為浮動宣傳費用.試問:當(dāng)該商品改革后的銷售量至少應(yīng)達(dá)到多少萬件時,才可能使改革后的銷售收入不低于原收入與總投入之和?并求出此時商品的每件定價.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,直線的普通方程為,曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(Ⅰ)求直線的參數(shù)方程和極坐標(biāo)方程;
(Ⅱ)設(shè)直線與曲線相交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品生產(chǎn)廠家根據(jù)以往的生產(chǎn)銷售經(jīng)驗得到下面有關(guān)生產(chǎn)銷售的統(tǒng)計規(guī)律:每生產(chǎn)產(chǎn)品(百臺),其總成本為(萬元),其中固定成本為萬元,并且每生產(chǎn)百臺的生產(chǎn)成本為萬元(總成本固定成本生產(chǎn)成本).銷售收入(萬元)滿足,假定該產(chǎn)品產(chǎn)銷平衡(即生產(chǎn)的產(chǎn)品都能賣掉),根據(jù)上述統(tǒng)計規(guī)律,請完成下列問題:
(1)寫出利潤函數(shù)的解析式(利潤銷售收入總成本);
(2)工廠生產(chǎn)多少臺產(chǎn)品時,可使盈利最多?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為豐富市民的文化生活,市政府計劃在一塊半徑為200m,圓心角為的扇形地上建造市民廣場,規(guī)劃設(shè)計如圖:內(nèi)接梯形區(qū)域為運動休閑區(qū),其中A,B分別在半徑,上,C,D在圓弧上,
;上,;區(qū)域為文化展區(qū),長為,其余空地為綠化區(qū)域,且長不得超過200m.
(1)試確定A,B的位置,使的周長最大?
(2)當(dāng)的周長最長時,設(shè),試將運動休閑區(qū)的面積S表示為的函數(shù),并求出S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)為兩個平面,則的充要條件是( )
A. 內(nèi)有無數(shù)條直線與β平行B. 垂直于同一平面
C. ,平行于同一條直線D. 內(nèi)有兩條相交直線與平行
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com