分類討論在相似形中的應用
馬健
在我們的幾何題目中,有許多問題需要分類討論,常因不會分類、分類不確切或討論不全面發(fā)生漏解。只有全面掌握基礎知識和經(jīng)過嚴密思考,找準解題的切入點,才能使得出的結論不重復、不遺漏。下面就相似形中的幾個問題加以說明。
例1. 已知兩數(shù)4和8,試寫出第三個數(shù),使這三個數(shù)中,其中一個數(shù)是另外兩個數(shù)的比例中項,則第三個數(shù)為_____________。
析:這是一道開放性題目,它需分幾種情況討論。不妨設第三個數(shù)為x,
由可得;
由得;
由可得。
故第三個數(shù)為2,或16,或。
例2. 若,求x的值。
析:利用合比性質(zhì),當,此時
又當時,可得出
此時
故x的值為,或。
例3. 要做兩個形狀相同的三角形框架,其中一個三角形框架的三邊長分別為4、5、6,另一個三角形框架的一邊長為2,怎樣選料,可使這兩個三角形相似。
析:本題中長為2的邊長可以分別與長為4、5、6的邊對應。
設另兩邊分別為x、y。于是得出:
得:;
得:;
得:。
所以框架另兩邊長可選,或,或。
例4. 如圖1,,點M在AB上且,點N在AC上,聯(lián)結MN,使△AMN與原三角形相似,則AN=___________。
析:當MN∥BC時,△AMN∽△ABC,可得:
,即
故
當MN不平行于BC時,∠AMN=∠C時,△AMN∽△ACB,可得:
,即,得
故AN長為2,或
例5. 若正方形的四個頂點分別在直角三角形的三條邊上,直角三角形的兩條直角邊長分別為3cm和4cm,則此正方形的邊長為____________。
析:這是一道操作、設計型開放題,可分兩種情況:(1)是正方形一角為直角三角形的直角時,如圖2,由相似可得出:;(2)是兩個頂點在斜邊上,如圖3,由相似可得出:。所以此正方形的邊長為,或。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com