2009年福建省三明市普通高中畢業(yè)班質(zhì)量檢查
理科數(shù)學(xué)
本試卷分第I卷(選擇題)和第Ⅱ卷(非選擇題),第Ⅱ卷第21題為選考題,其他題為必考題,本試卷共6頁(yè),滿分150分,考試時(shí)間120分鐘。
注意事項(xiàng):
1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。
2.考生作答時(shí),將答案答在答題卡上,請(qǐng)按照題號(hào)在各題的答題區(qū)域(黑色線框)內(nèi)作答,超出答題區(qū)域書(shū)寫(xiě)的答案無(wú)效,在草稿紙、試題卷上答題無(wú)效。
3.選擇題答案使用2B鉛筆填涂,如需改動(dòng),用橡皮擦干凈后,再選涂其他答案標(biāo)號(hào);非選擇題答案使用0.5毫米的黑色中性(簽)筆或碳素筆書(shū)寫(xiě),字體工整、筆記清楚。
4.做選考題時(shí),考生按照題目要求作答,并用2B鉛筆在答題卡上把所選題目對(duì)應(yīng)的題號(hào)涂黑。
5.保持答題卡卡面清潔,不折疊、不破損,考試結(jié)束后,將本試卷和答題卡一并交回。
參考公式:
樣本數(shù)據(jù),的標(biāo)準(zhǔn)差 錐體體積公式
其中為底面面積,為高
其中為樣本平均數(shù) 球的表面積、體積公式
柱體體積公式
其中為底面面積,為高 其中為球的半徑
第I卷(選擇題 共50分)
一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,把答案填涂在答題卡上。
1.復(fù)數(shù)等于
A. B. C. D.
2.雙曲線的漸近線方程是
A. B. C. D.
3.在中,已知為的中點(diǎn),則下列向量與同向的是
A. B. C. D.
4.已知函數(shù)的圖象,(部分)如圖所示,則的解析式是
A.
B.
C.
D.
5.下圖是一個(gè)幾何體的三視圖,根據(jù)圖中數(shù)據(jù),可得該幾何體的體積為
A. B. C. D.
6.某市教育部門通過(guò)調(diào)查10000名高中生參加體育鍛煉的狀況,根據(jù)調(diào)查數(shù)據(jù)畫(huà)出了樣本分布直方圖(如上圖),為了分析學(xué)生參加體育鍛煉與課程學(xué)習(xí)的關(guān)系,采用分層抽樣的方法從這10000人再抽出100人做進(jìn)一步調(diào)查,則在每周參加體育鍛煉的時(shí)間落在小時(shí)內(nèi)的學(xué)生中應(yīng)抽出的人數(shù)為
A.15
B.
7.已知函數(shù)在定義域內(nèi)可導(dǎo),其圖象如圖,記的導(dǎo)函數(shù)為,則不等式的解集為
A.
B.
C.
D.
8.設(shè)、是不同的直線、、是不同的平面,有以下四個(gè)命題
①; ②; ③;④
其中正確的是命題是
A.①④ B.②③ C.①③ D.②④
9.若,命題;命題直線與圓相交,則 是的
A.充分不必要條件 B.必要不充分條件
C.充分必要條件 D.既不充分也不必要條件
10.如果兩個(gè)位數(shù)相同的自然數(shù)恰好只有某一數(shù)位上的數(shù)字不相同,則稱這兩個(gè)數(shù)為相鄰數(shù),例如:123與103、5555與5565分別是兩個(gè)相鄰數(shù),若集合中的元素均為兩位數(shù),且任意兩個(gè)數(shù)都不是相鄰數(shù),則中的元素最多有
A.8個(gè) B.9個(gè) C.11個(gè) D.12個(gè)
第Ⅱ卷(非選擇題 共100分)
二、填空題:本大題共5小題,每小題4分,共20分。把答案填在答題卡相應(yīng)位置。
11.若正數(shù)、滿足則的最大值為_(kāi)___________。
12.在亞丁灣某海域有一執(zhí)行任務(wù)的甲軍艦獲悉,其正東方向距離20海里處,有一艘貨輪遇海盜襲擊等待營(yíng)救,甲艦?zāi)掀?0°距離10海里處有一艘乙艦,甲、乙兩艦共同實(shí)施救援行動(dòng),此時(shí)乙艦與貨輪的距離是___________海里。
13.由曲線所圍成的封閉圖形的
面積為_(kāi)_________。
14.運(yùn)行如圖所示的程序流程圖,則輸出的值為_(kāi)_____
_______。
15.已知集合,直線的斜率為,且
,令則__________。
三、解答題:本大題共6小題,共80分,解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟。
16.(本小題滿分13分)
如圖,過(guò)原點(diǎn)且傾斜角為的直線交單位圓于點(diǎn)
是單位圓與軸正半軸的交點(diǎn),是
單位圓上第二象限的點(diǎn),且為正三角形
(I)求與的值;
(Ⅱ)現(xiàn)向單位圓內(nèi)隨機(jī)投擲一個(gè)點(diǎn),求該點(diǎn)落在
內(nèi)的概率。
17.(本小題滿分13分)
某市為提高城市品位,計(jì)劃對(duì)市內(nèi)現(xiàn)有全部出租車進(jìn)行更新?lián)Q代,在引進(jìn)新車型的同時(shí)淘汰等量的舊車型,現(xiàn)決定2009年1月份更新輛,以后每個(gè)月更新的車輛數(shù)比前一個(gè)月多輛,兩年時(shí)間更新完畢。
(I)問(wèn)該市的出租車共有多少輛?
(Ⅱ)若從第二個(gè)月起,每個(gè)月以10%的增長(zhǎng)速度進(jìn)行更新,至少需要多少個(gè)月才能更新完畢?(參考數(shù)據(jù):)
18.(本小題滿分13分)
如圖,在長(zhǎng)方體中,,點(diǎn)在
側(cè)面內(nèi),、分別為、的中點(diǎn)。
(I)求證:平面;
(Ⅱ)求平面與平面所成角的余弦值;
(Ⅲ)若,當(dāng)為何值時(shí),面。
19.(本小題滿分13分)
已知橢圓的焦點(diǎn)在軸上,它的一個(gè)頂點(diǎn)恰好是拋物線
的焦點(diǎn),離心率,過(guò)橢圓的右焦點(diǎn)作與坐標(biāo)軸不垂直的直線,交橢圓于、兩點(diǎn)。
(I)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),且,求的取值范圍;
(Ⅲ)設(shè)點(diǎn)是點(diǎn)關(guān)于軸的對(duì)稱點(diǎn),在軸上是否存在一個(gè)定點(diǎn),使得、、三點(diǎn)共線?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由。
20.(本小題滿分14分)
已知函數(shù)
(I)若時(shí),求的極值;
(Ⅱ)若存在的單調(diào)遞減區(qū)間,求的取值范圍;
(Ⅲ)若圖象與軸交于,的中點(diǎn)為,
求證:
21.本題有(1)、(2)、(3)三個(gè)選答題,每題7分,請(qǐng)考生任選2題作答,滿分14分,如
果多做,則按所做的前兩題記分。
(1)(本小題滿分7分)選修4-2;矩陣與變換
已知矩陣,向量
(I)求矩陣的特征值、和特征向量、;
(Ⅱ)求的值。
(2)(本小題滿分7分)選修4―4;坐標(biāo)系與參數(shù)方程
以極點(diǎn)為原點(diǎn),極軸為軸正半軸,建立平面直角坐標(biāo)系,兩坐標(biāo)系中取相同的長(zhǎng)度單位的極坐標(biāo)方程為,的參數(shù)方程為(為參數(shù)),求、的公共弦的長(zhǎng)度。
(3)(本小題滿分7分)選修4―5;不等式選講
若函數(shù)的最小值為2,求自變量的取值范圍
2009年三明市普通高中畢業(yè)班質(zhì)量檢查
一、選擇題:本大題共10小題,每小題5分,共50分。
1.B 2.D 3.A 4.A 5.B 6.C 7.C 8.C 9.A 10.B
二、填空題:本大題共5小題,每小題4分,共20分。
11.5 12. 13. 14.7 15.
三、解答題:本大題共6小題,共80分。
16.解:(I)由三角函數(shù)的定義可知
又為正三角形,
(Ⅱ)
圓的面積為。
該點(diǎn)落在內(nèi)的概率
17.解:(I)依題意,每個(gè)月更新的車輛數(shù)構(gòu)成一個(gè)首項(xiàng)為,公差為的等差數(shù)列,設(shè)第
個(gè)月更新的車輛數(shù)為,則
該市的出租車總數(shù)(輛)
(Ⅱ)依題意,每個(gè)月更新的車輛數(shù)構(gòu)成一個(gè)首項(xiàng)為,公比為1.1的等比數(shù)列,則第
個(gè)月更新的車輛數(shù),設(shè)至少需要個(gè)月才能更新完畢,
個(gè)月更新的車輛總數(shù),
即,由參數(shù)數(shù)據(jù)可得
故以此速度進(jìn)行更新,至少需要37個(gè)月才能更新完該市所有的出租車
18.解(I),為等腰直角三角形,
(Ⅱ)如圖建立空間直角坐標(biāo)系,則
設(shè)平面的一個(gè)法向量為,
則有 得
平面的一個(gè)法向量
而的一個(gè)法向量
平面與平面所成的角的余弦值
(Ⅲ),
設(shè)平面的法向量為,則有
平面的一個(gè)法向量為
若要使得面,則要,即
解得, 當(dāng)時(shí), 面
19.解法一:
(I)設(shè)橢圓方程為,由題意知
故橢圓方程為
(Ⅱ)由(I)得,所以,設(shè)的方程為()
代入,得
設(shè)則
由,
當(dāng)時(shí),有成立。
(Ⅲ)在軸上存在定點(diǎn),使得、、三點(diǎn)共線。
依題意知,直線BC的方程為,
令,則
的方程為、在直線上,
在軸上存在定點(diǎn),使得、、三點(diǎn)共線。
解法二:(I)同解法一。
(Ⅱ)由(I)得,所以。
設(shè)的方程為
代入,得
設(shè)則
當(dāng)時(shí),有成立。
(Ⅲ)在軸上存在定點(diǎn),使得、、三點(diǎn)共線。
設(shè)存在使得、、三點(diǎn)共線,則,
,
即
,。
所以,存在,使得、、三點(diǎn)共線。
20.解:(I)
當(dāng)時(shí),
由或。
x
(0,1)
1
+
―
單調(diào)遞增
極大值
單調(diào)遞減
時(shí),,無(wú)極小值。
(Ⅱ)存在單調(diào)遞減區(qū)間,
在內(nèi)有解,即在內(nèi)有解。
若,則,在單調(diào)遞增,不存在單調(diào)遞減區(qū)間;
若,則函數(shù)的圖象是開(kāi)口向上的拋物線,且恒過(guò)點(diǎn)(0,1),要
使在內(nèi)有解,則應(yīng)有
或,由于,;
若,則函數(shù)的圖象是開(kāi)口向下的拋物線,且恒過(guò)點(diǎn)(0,1),
在內(nèi)一定有解。
綜上,或。
(Ⅲ)依題意:,假設(shè)結(jié)論不成立,
則有
①―②,得
由③得,
即
設(shè),則,
令
,在(0,1)上為增函數(shù)。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com