2009年高考數(shù)學(xué)難點突破專題輔導(dǎo)九

難點指數(shù)函數(shù)、對數(shù)函數(shù)問題

指數(shù)函數(shù)、對數(shù)函數(shù)是高考考查的重點內(nèi)容之一,本節(jié)主要幫助考生掌握兩種函數(shù)的概念、圖象和性質(zhì)并會用它們?nèi)ソ鉀Q某些簡單的實際問題.

●難點磁場

(★★★★★)設(shè)f(x)=log26ec8aac122bd4f6e,F(x)=6ec8aac122bd4f6e+f(x).

(1)試判斷函數(shù)f(x)的單調(diào)性,并用函數(shù)單調(diào)性定義,給出證明;

(2)若f(x)的反函數(shù)為f1(x),證明:對任意的自然數(shù)n(n≥3),都有f1(n)>6ec8aac122bd4f6e;

(3)若F(x)的反函數(shù)F1(x),證明:方程F1(x)=0有惟一解.

●案例探究

[例1]已知過原點O的一條直線與函數(shù)y=log8x的圖象交于A、B兩點,分別過點ABy軸的平行線與函數(shù)y=log2x的圖象交于C、D兩點.

(1)證明:點CD和原點O在同一條直線上;

(2)當(dāng)BC平行于x軸時,求點A的坐標(biāo).

命題意圖:本題主要考查對數(shù)函數(shù)圖象、對數(shù)換底公式、對數(shù)方程、指數(shù)方程等基礎(chǔ)知識,考查學(xué)生的分析能力和運算能力.屬★★★★級題目.

知識依托:(1)證明三點共線的方法:kOC=kOD.

(2)第(2)問的解答中蘊涵著方程思想,只要得到方程(1),即可求得A點坐標(biāo).

錯解分析:不易考慮運用方程思想去解決實際問題.

技巧與方法:本題第一問運用斜率相等去證明三點共線;第二問運用方程思想去求得點A的坐標(biāo).

(1)證明:設(shè)點A、B的橫坐標(biāo)分別為x1、x2,由題意知:x1>1,x2>1,則A、B縱坐標(biāo)分別為log8x1,log8x2.因為A、B在過點O的直線上,所以6ec8aac122bd4f6e,點C、D坐標(biāo)分別為(x1,log2x1),(x2,log2x2),由于log2x1=6ec8aac122bd4f6e=6ec8aac122bd4f6e3log8x2,所以OC的斜率:k1=6ec8aac122bd4f6e,

OD的斜率:k2=6ec8aac122bd4f6e,由此可知:k1=k2,即OC、D在同一條直線上.

(2)解:由BC平行于x軸知:log2x1=log8x2  即:log2x1=6ec8aac122bd4f6elog2x2,代入x2log8x1=x1log8x2得:x13log8x1=3x1log8x1,由于x1>1知log8x1≠0,∴x13=3x1.又x1>1,∴x1=6ec8aac122bd4f6e,則點A的坐標(biāo)為(6ec8aac122bd4f6e,log86ec8aac122bd4f6e).

[例2]在xOy平面上有一點列P1(a1,b1),P2(a2,b2),…,Pn(an,bn)…,對每個自然數(shù)nPn位于函數(shù)y=2000(6ec8aac122bd4f6e)x(0<a<1)的圖象上,且點Pn,點(n,0)與點(n+1,0)構(gòu)成一個以Pn為頂點的等腰三角形.

(1)求點Pn的縱坐標(biāo)bn的表達(dá)式;

(2)若對于每個自然數(shù)n,以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形,求a的取值范圍;

(3)設(shè)Cn=lg(bn)(nN*),若a取(2)中確定的范圍內(nèi)的最小整數(shù),問數(shù)列{Cn}前多少項的和最大?試說明理由.

命題意圖:本題把平面點列,指數(shù)函數(shù),對數(shù)、最值等知識點揉合在一起,構(gòu)成一個思維難度較大的綜合題目,本題主要考查考生對綜合知識分析和運用的能力.屬★★★★★級

題目.

知識依托:指數(shù)函數(shù)、對數(shù)函數(shù)及數(shù)列、最值等知識.

錯解分析:考生對綜合知識不易駕馭,思維難度較大,找不到解題的突破口.

技巧與方法:本題屬于知識綜合題,關(guān)鍵在于讀題過程中對條件的思考與認(rèn)識,并會運用相關(guān)的知識點去解決問題.

解:(1)由題意知:an=n+6ec8aac122bd4f6e,∴bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e.

(2)∵函數(shù)y=2000(6ec8aac122bd4f6e)x(0<a<10)遞減,∴對每個自然數(shù)n,有bn>bn+1>bn+2.則以bn,bn+1,bn+2為邊長能構(gòu)成一個三角形的充要條件是bn+2+bn+1>bn,即(6ec8aac122bd4f6e)2+(6ec8aac122bd4f6e)-1>0,解得a<-5(1+6ec8aac122bd4f6e)或a>5(6ec8aac122bd4f6e-1).∴5(6ec8aac122bd4f6e-1)<a<10.

(3)∵5(6ec8aac122bd4f6e-1)<a<10,∴a=7

bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e.數(shù)列{bn}是一個遞減的正數(shù)數(shù)列,對每個自然數(shù)n≥2,Bn=bnBn1.于是當(dāng)bn≥1時,Bn<Bn1,當(dāng)bn<1時,BnBn1,因此數(shù)列{Bn}的最大項的項數(shù)n滿足不等式bn≥1且bn+1<1,由bn=2000(6ec8aac122bd4f6e)6ec8aac122bd4f6e≥1得:n≤20.8.∴n=20.

●錦囊妙計

本難點所涉及的問題以及解決的方法有:

(1)運用兩種函數(shù)的圖象和性質(zhì)去解決基本問題.此類題目要求考生熟練掌握函數(shù)的圖象和性質(zhì)并能靈活應(yīng)用.

(2)綜合性題目.此類題目要求考生具有較強的分析能力和邏輯思維能力.

(3)應(yīng)用題目.此類題目要求考生具有較強的建模能力.

●殲滅難點訓(xùn)練

一、選擇題

1.(★★★★)定義在(-∞,+∞)上的任意函數(shù)f(x)都可以表示成一個奇函數(shù)g(x)和一個偶函數(shù)h(x)之和,如果f(x)=lg(10x+1),其中x∈(-∞,+∞),那么(    )

A.g(x)=x,h(x)=lg(10x+10x+2)

試題詳情

B.g(x)=6ec8aac122bd4f6e[lg(10x+1)+x],h(x)= 6ec8aac122bd4f6e[lg(10x+1)-x

試題詳情

C.g(x)=6ec8aac122bd4f6e,h(x)=lg(10x+1)-6ec8aac122bd4f6e

試題詳情

D.g(x)=-6ec8aac122bd4f6e,h(x)=lg(10x+1)+6ec8aac122bd4f6e

試題詳情

2.(★★★★)當(dāng)a>1時,函數(shù)y=logaxy=(1-a)x的圖象只可能是(    )

試題詳情

6ec8aac122bd4f6e

試題詳情

二、填空題

3.(★★★★★)已知函數(shù)f(x)=6ec8aac122bd4f6e.則f-1(x-1)=_________.

試題詳情

6ec8aac122bd4f6e4.(★★★★★)如圖,開始時,桶1中有a L水,t分鐘后剩余的水符合指數(shù)衰減曲線y=

試題詳情

aent,那么桶2中水就是y2=aaent,假設(shè)過5分鐘時,桶1和桶2的水相等,則再過_________分鐘桶1中的水只有6ec8aac122bd4f6e.

試題詳情

三、解答題

5.(★★★★)設(shè)函數(shù)f(x)=loga(x-3a)(a>0且a≠1),當(dāng)點P(x,y)是函數(shù)y=f(x)圖象上的點時,點Q(x-2a,-y)是函數(shù)y=g(x)圖象上的點.

(1)寫出函數(shù)y=g(x)的解析式;

(2)若當(dāng)x∈[a+2,a+3]時,恒有|f(x)-g(x)|≤1,試確定a的取值范圍.

試題詳情

6.(★★★★)已知函數(shù)f(x)=logax(a>0且a≠1),(x∈(0,+∞)),若x1,x2∈(0,+∞),判斷6ec8aac122bd4f6ef(x1)+f(x2)]與f(6ec8aac122bd4f6e)的大小,并加以證明.

試題詳情

7.(★★★★★)已知函數(shù)x,y滿足x≥1,y≥1.loga2x+loga2y=loga(ax2)+loga(ay2)(a>0且a≠1),求loga(xy)的取值范圍.

試題詳情

8.(★★★★)設(shè)不等式2(log6ec8aac122bd4f6ex)2+9(log6ec8aac122bd4f6ex)+9≤0的解集為M,求當(dāng)xM時函數(shù)f(x)=(log26ec8aac122bd4f6e)(log26ec8aac122bd4f6e)的最大、最小值.

試題詳情

難點磁場

解:(1)由6ec8aac122bd4f6e>0,且2-x≠0得F(x)的定義域為(-1,1),設(shè)-1<x1x2<1,則

F(x2)-F(x1)=(6ec8aac122bd4f6e)+(6ec8aac122bd4f6e)

6ec8aac122bd4f6e,

x2x1>0,2-x1>0,2-x2>0,∴上式第2項中對數(shù)的真數(shù)大于1.

因此F(x2)-F(x1)>0,F(x2)>F(x1),∴F(x)在(-1,1)上是增函數(shù).

(2)證明:由y=f(x)=6ec8aac122bd4f6e得:2y=6ec8aac122bd4f6e,

f1(x)=6ec8aac122bd4f6e,∵f(x)的值域為R,∴f-1(x)的定義域為R.

當(dāng)n≥3時,f-1(n)>6ec8aac122bd4f6e.

用數(shù)學(xué)歸納法易證2n>2n+1(n≥3),證略.

(3)證明:∵F(0)=6ec8aac122bd4f6e,∴F1(6ec8aac122bd4f6e)=0,∴x=6ec8aac122bd4f6eF1(x)=0的一個根.假設(shè)F1(x)=0還有一個解x0(x06ec8aac122bd4f6e),則F-1(x0)=0,于是F(0)=x0(x06ec8aac122bd4f6e).這是不可能的,故F-1(x)=0有惟一解.

殲滅難點訓(xùn)練

一、1.解析:由題意:g(x)+h(x)=lg(10x+1)                                                                      ①

g(-x)+h(-x)=lg(10x+1).即-g(x)+h(x)=lg(10x+1)                                             ②

由①②得:g(x)=6ec8aac122bd4f6e,h(x)=lg(10x+1)-6ec8aac122bd4f6e.

答案:C

2.解析:當(dāng)a>1時,函數(shù)y=logax的圖象只能在A和C中選,又a>1時,y=(1-a)x為減函數(shù).

答案:B

二、3.解析:容易求得f- 1(x)=6ec8aac122bd4f6e,從而:

f1(x-1)=6ec8aac122bd4f6e

答案:6ec8aac122bd4f6e

4.解析:由題意,5分鐘后,y1=aent,y2=aaent,y1=y2.∴n=6ec8aac122bd4f6eln2.設(shè)再過t分鐘桶1中的水只有6ec8aac122bd4f6e,則y1=aen(5+t)=6ec8aac122bd4f6e,解得t=10.

答案:10

三、5.解:(1)設(shè)點Q的坐標(biāo)為(x′,y′),則x′=x-2a,y′=-y.即x=x′+2a,y=-y′.

∵點P(x,y)在函數(shù)y=loga(x-3a)的圖象上,∴-y′=loga(x′+2a-3a),即y′=loga6ec8aac122bd4f6e,∴g(x)=loga6ec8aac122bd4f6e.

(2)由題意得x-3a=(a+2)-3a=-2a+2>0;6ec8aac122bd4f6e=6ec8aac122bd4f6e>0,又a>0且a≠1,∴0<a<1,∵|f(x)-g(x)|=|loga(x-3a)-loga6ec8aac122bd4f6e|=|loga(x2-4ax+3a2)|?|f(x)-g(x)|≤1,∴-1≤loga(x2-4ax+3a2)≤1,∵0<a<1,∴a+2>2a.f(x)=x2-4ax+3a2在[a+2,a+3]上為減函數(shù),∴μ(x)=loga(x2-4ax+3a2)在[a+2,a+3]上為減函數(shù),從而[μ(x)]max=μ(a+2)=loga(4-4a),[μ(x)]min=μ(a+3)=loga(9-6a),于是所求問題轉(zhuǎn)化為求不等式組6ec8aac122bd4f6e的解.

由loga(9-6a)≥-1解得0<a6ec8aac122bd4f6e,由loga(4-4a)≤1解得0<a6ec8aac122bd4f6e,

∴所求a的取值范圍是0<a6ec8aac122bd4f6e.

6.解:f(x1)+f(x2)=logax1+logax2=logax1x2,

x1,x2∈(0,+∞),x1x2≤(6ec8aac122bd4f6e)2(當(dāng)且僅當(dāng)x1=x2時取“=”號),

當(dāng)a>1時,有l(wèi)ogax1x2≤loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6elogax1x2≤loga(6ec8aac122bd4f6e),6ec8aac122bd4f6e(logax1+logax2)≤loga6ec8aac122bd4f6e,

6ec8aac122bd4f6e6ec8aac122bd4f6ef(x1)+f(x2)]≤f(6ec8aac122bd4f6e)(當(dāng)且僅當(dāng)x1=x2時取“=”號)

當(dāng)0<a<1時,有l(wèi)ogax1x2≥loga(6ec8aac122bd4f6e)2,

6ec8aac122bd4f6e(logax1+logax2)≥loga6ec8aac122bd4f6e,即6ec8aac122bd4f6ef(x1)+f(x2)]≥f(6ec8aac122bd4f6e)(當(dāng)且僅當(dāng)x1=x2時取“=”號).

7.解:由已知等式得:loga2x+loga2y=(1+2logax)+(1+2logay),即(logax-1)2+(logay-1)2=4,令u=logax,v=logay,k=logaxy,則(u-1)2+(v-1)2=4(uv≥0),k=u+v.在直角坐標(biāo)系uOv內(nèi),圓弧(u-1)2+(v-1)2=4(uv≥0)與平行直線系v=-u+k有公共點,分兩類討論.

(1)當(dāng)u≥0,v≥0時,即a>1時,結(jié)合判別式法與代點法得1+6ec8aac122bd4f6ek≤2(1+6ec8aac122bd4f6e);

(2)當(dāng)u≤0,v≤0,即0<a<1時,同理得到2(1-6ec8aac122bd4f6e)≤k≤1-6ec8aac122bd4f6e.x綜上,當(dāng)a>1時,logaxy的最大值為2+26ec8aac122bd4f6e,最小值為1+6ec8aac122bd4f6e;當(dāng)0<a<1時,logaxy的最大值為1-6ec8aac122bd4f6e,最小值為2-26ec8aac122bd4f6e.

8.解:∵2(6ec8aac122bd4f6ex)2+9(6ec8aac122bd4f6ex)+9≤0

∴(26ec8aac122bd4f6ex+3)( 6ec8aac122bd4f6ex+3)≤0.

∴-3≤6ec8aac122bd4f6ex≤-6ec8aac122bd4f6e.

6ec8aac122bd4f6e (6ec8aac122bd4f6e)36ec8aac122bd4f6ex6ec8aac122bd4f6e(6ec8aac122bd4f6e)6ec8aac122bd4f6e?

∴(6ec8aac122bd4f6e)6ec8aac122bd4f6ex≤(6ec8aac122bd4f6e)3,∴26ec8aac122bd4f6ex≤8

M={x|x∈[26ec8aac122bd4f6e,8]}

f(x)=(log2x-1)(log2x-3)=log22x-4log2x+3=(log2x-2)2-1.

∵26ec8aac122bd4f6ex≤8,∴6ec8aac122bd4f6e≤log2x≤3

∴當(dāng)log2x=2,即x=4時ymin=-1;當(dāng)log2x=3,即x=8時,ymax=0.

 

 

 


同步練習(xí)冊答案