2009屆高考數(shù)學(xué)第三輪復(fù)習(xí)精編模擬五
參考公式:
如果事件互斥,那么 球的表面積公式
如果事件相互獨(dú)立,那么 其中表示球的半徑
球的體積公式
如果事件在一次試驗(yàn)中發(fā)生的概率是,那么
次獨(dú)立重復(fù)試驗(yàn)中事件恰好發(fā)生次的概率 其中表示球的半徑
第一部分 選擇題(共50分)
一.選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的
1、設(shè)為全集,是的三個非空子集,且,則下面論斷正確的是 ( )w.w.w.k.s.5.u.c.o.m
(A); (B);
(C);(D).
2、已知、是非零向量且滿足(-2) ⊥,(-2) ⊥,則與的夾角是 ( )
(A). (B) (C). (D).
3、已知,則等于 ( )
A、 B、 C、 D、
4、已知,為常數(shù),且,則函數(shù)必有一周期為: ( )
A、2 B、
5、交于A、B兩點(diǎn),且,則直線AB的方程為: ( 。
A、 B、
C、 D、
6、我國儲蓄存款采取實(shí)名制并征收利息稅,利息稅由各銀行儲蓄點(diǎn)代扣代收。某人在2001年9月存入人民幣1萬元,存期一年,年利率為2.25%,到期時凈得本金和利息共計(jì)10180元,則利息稅的稅率是: 。 )
A、8% B、20% C、32% D、80%
7、不等式的解集是( )
A、 B、 C、{4,5,6} D、{4,4.5,5,5.5,6}
8、七人并排站成一行,如果甲、乙兩人必需不相鄰,那么不同的排法的種數(shù)是( )
(A) 1440 (B) 3600 (C) 4320 (D) 4800
9、若關(guān)于的方程只有一個實(shí)數(shù)根,則的取值范圍為( )
A、=0 B、=0或>1
C、>1或<-1 D、=0或>1或<-1
10、一個四面體的所有棱長都為,四個項(xiàng)點(diǎn)在同一球面上,則此球的表面積為( )
(A)3 (B)4 (C)3 (D)6
第二部分 非選擇題(共100分)
二、填空題:本大題共5小題,其中14~15題是選做題,考生只能選做一題,兩題全答的,只計(jì)算前一題得分.每小題5分,滿分20分.
11、已知函數(shù)在區(qū)間上為增函數(shù),則實(shí)數(shù)a的取值范圍是 。
12、有些計(jì)算機(jī)對表達(dá)式的運(yùn)算處理過程實(shí)行“后綴表達(dá)式”:運(yùn)算符號緊跟在運(yùn)算對象的后面,按照從左到右的順序運(yùn)算,如表達(dá)式,其運(yùn)算為:,若計(jì)算機(jī)進(jìn)行運(yùn)算:,那么使此表達(dá)式有意義的的范圍為 _____________ .
13、若四面體各棱的長是1或2,且該四面體不是正四面體,則其體積是 (只需寫出一個可能的值).
14、(坐標(biāo)系與參數(shù)方程選做題) 極坐標(biāo)系中,點(diǎn)P到直線:的距離是 .
15.(幾何證明選講選做題) 如圖,圓 O 的割線 PBA 過圓心 O,弦 CD 交 PA 于點(diǎn)F,且△COF∽△PDF,PB = OA = 2,則PF = 。
三.解答題:本大題共6小題,共80分,解答應(yīng)寫出文字說明、證明過程或演算步驟.
16.(本小題滿分12分)
已知命題:方程有兩個不等的負(fù)實(shí)根;:方程無實(shí)根.若“或”為真,“且”為假,求實(shí)數(shù)的取值范圍.
17.(本小題滿分12分)
在△ABC中,已知 .
(1) 求AB邊的長度;
(2)證明:;
(3)若,求.
18.(本小題滿分14分)
已知函數(shù)圖像上一點(diǎn)處的切線方程為,其中為常數(shù).
(Ⅰ)函數(shù)是否存在單調(diào)減區(qū)間?若存在,則求出單調(diào)減區(qū)間(用表示);
(Ⅱ)若不是函數(shù)的極值點(diǎn),求證:函數(shù)的圖像關(guān)于點(diǎn)對稱.
19.(本小題滿分14分)
SD垂直于底面ABCD,SB=.
(I)求證BCSC;
(II)求面ASD與面BSC所成二面角的大;
(III)設(shè)棱SA的中點(diǎn)為M,求異面直線DM與SB所成角的大小.
20.(本小題滿分14分)
設(shè)圓過點(diǎn)P(0,2), 且在軸上截得的弦RG的長為4.
(1)求圓心的軌跡E的方程;
21.(本小題滿分14分)
在平面直角坐標(biāo)系上,設(shè)不等式組()
所表示的平面區(qū)域?yàn)?sub>,記內(nèi)的整點(diǎn)(即橫坐標(biāo)和縱坐標(biāo)均
(Ⅰ)求并猜想的表達(dá)式再用數(shù)學(xué)歸納法加以證明;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,數(shù)列的前項(xiàng)和,
是否存在自然數(shù)m?使得對一切,恒成立。若存在,
求出m的值,若不存在,請說明理由。
一.選擇題:CBDCC BDBDA
解析:1: 由文氏圖可得結(jié)論(C).
2:由已知得:(-2)=0,(-2) =0;即得:==2,∴cos<,>=,∴選(B)
3:由于受條件sin2θ+cos2θ=1的制約,故m為一確定的值,于是sinθ,cosθ的值應(yīng)與m的值無關(guān),進(jìn)而推知tan的值與m無關(guān),又<θ<π,<<,∴tan>1,故選D。
4:由于,從而函數(shù)的一個背景為正切函數(shù)tanx,取,可得必有一周期為4。故選C。
5:解此題具有很大的迷惑性,注意題目隱含直線AB的方程就是,它過定點(diǎn)(0,2),只有C項(xiàng)滿足。故選C。
6:生活常識告訴我們利息稅的稅率是20%。故選B。
7:四個選項(xiàng)中只有答案D含有分?jǐn)?shù),這是何故?宜引起高度警覺,事實(shí)上,將x值取4.5代入驗(yàn)證,不等式成立,這說明正確選項(xiàng)正是D,而無需繁瑣地解不等式。
8:(用排除法)七人并排站成一行,總的排法有種,其中甲、乙兩人相鄰的排法有2×種.因此,甲、乙兩人必需不相鄰的排法種數(shù)有:-2×=3600,對照后應(yīng)選B;
9:作直線的圖象和半圓,從圖中可以看出: 的取值范圍應(yīng)選(D).
注:求與方程實(shí)數(shù)根個數(shù)有關(guān)的問題常用圖解法.
10:如圖,將正四面體ABCD補(bǔ)形成正方體,則正四面體、正方體的中心與其外接球的球心共一點(diǎn).因?yàn)檎拿骟w棱長為,所以正方體棱長為1,從而外接球半徑R=.故S球=3.
二.填空題:11、; 12、; 13、或或;
14、+1; 15、3;
解析:11:,由復(fù)合函數(shù)的增減性可知,在上為增函數(shù),∴,∴。
12:計(jì)算機(jī)進(jìn)行運(yùn)算:時,它表示的表達(dá)式是,當(dāng)其有意義時,得,解得.
13: 本題是一道很好的開放題,解題的開竅點(diǎn)是:每個面的三條棱是怎樣構(gòu)造的,依據(jù)“三角形中兩邊之和大于第三邊”,就可否定{1,1,2},從而得出{1,1,1},{1,2,2},{2,2,2}三種形態(tài),再由這三類面構(gòu)造滿足題設(shè)條件的四面體,最后計(jì)算出這三個四面體的體積分別為: , ,,故應(yīng)填.、 、 中的一個即可.
14.解:直線:化為一般方程:,點(diǎn)P化為點(diǎn),則點(diǎn)到直線的距離為
15解:由△COF∽△PDF得,即=
==,即=,
解得,故=3
三.解答題:
16.解:當(dāng)P為真時,有 ……4分
當(dāng)Q為真時,有 ……5分
……6分
由題意:“P或Q”真,“P且Q”為假 等價(jià)于
(1)P真Q假: ……8分
(2)Q真P假: ……11分
綜合(1)(2)的取值范圍是 ……12分
17.解:(1)∵∴
∵ ∴, 即AB邊的長度為 ……………………3分
(2) 由 得-------------①
即-------------②
由①②得, 由正弦定理得
∴ ∴-- ……………………8分
(3) ∵,由(2)中①得 由余弦定理得=
∴=- ……………………12分
18.解:(Ⅰ),, ……………1分
由題意,知,,
即 ……………………2分
…………………3分
① 當(dāng)時,,函數(shù)在區(qū)間上單調(diào)增加,
不存在單調(diào)減區(qū)間; ……………………5分
② 當(dāng)時,,有
+
-
+
當(dāng)時,函數(shù)存在單調(diào)減區(qū)間,為 ……………7分
③ 當(dāng)時, ,有
+
-
+
當(dāng)時,函數(shù)存在單調(diào)減區(qū)間,為 …………9分
(Ⅱ)由(Ⅰ)知:若不是函數(shù)的極值點(diǎn),則,
…………………10分
設(shè)點(diǎn)是函數(shù)的圖像上任意一點(diǎn),則,
點(diǎn)關(guān)于點(diǎn)的對稱點(diǎn)為,
(或 )
點(diǎn)在函數(shù)的圖像上.
由點(diǎn)的任意性知函數(shù)的圖像關(guān)于點(diǎn)對稱. …………………14分
19. [方法一]:(幾何法)
(I)證法一:如圖1,∵底面ABCD是正方形, ∴BC⊥DC.
∵SD⊥底面ABCD,∴DC是SC在平面ABCD上的射影,
由三垂線定理得BC⊥SC. …………3分
證法二:如圖1,∵底面ABCD是正方形, ∴BC⊥DC.
∵SD⊥底面ABCD,∴SD⊥BC,又DC∩SD=D, 圖1
∴BC⊥平面SDC,∴BC⊥SC. …………3分
(II)解法一:∵SD⊥底面ABCD,且ABCD為正方形,
∴可把四棱錐S―ABCD補(bǔ)形為長方體A1B1C1S―ABCD,
如圖2,面ASD與面BSC所成的二面角就是面ADSA1與面BCSA1所成的二面角,
∵SC⊥BC,BC//A1S, ∴SC⊥A1S,
又SD⊥A1S,∴∠CSD為所求二面角的平面角.
在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,
由勾股定理得SD=1.
∴∠CSD=45°.即面ASD與面BSC所成的二面角為45°. ……………8分
解法二:如圖3,過點(diǎn)S作直線在面ASD上,
∵底面ABCD為正方形,在面BSC上,
∴∠CSD為面ASD與面BSC所成二面角的平面角.
在Rt△SCB中,由勾股定理得SC=,在Rt△SDC中,
由勾股定理得SD=1.
∴∠CSD=45°.即面ASD與面BSC所成的二面角
為 45°!8分
(III)解法一:如圖3, ∵SD=AD=1,∠SDA=90°, ∴△SDA是等腰直角三角形.
又M是斜邊SA的中點(diǎn), ∴DM⊥SA.
∵BA⊥AD,BA⊥SD,AD∩SD=D,∴BA⊥面ASD,SA是SB在面ASD上的射影.
由三垂線定理得DM⊥SB. ∴異面直線DM與SB所成的角為90°. ……………14分
解法二:如圖4,取AB中點(diǎn)P,連結(jié)MP,DP.
在△ABS中,由中位線定理得 MP//SB,是異面直線DM與SB所成的角.
,
又
∴在△DMP中,有DP2=MP2+DM2,
即異面直線DM與SB所成的角為90°. ……………14分
解析:如圖所示,以D為坐標(biāo)原點(diǎn)建立直角坐標(biāo)系,
則D(0,0,0),A(1,0,0),B(1,1,0),C(0,1,0),
M(,0,),
∵ SB=,DB=,SD=1,∴ S(0,0,1),……………2分
(I)證明:∵ ,
=0 ∴ ,即BCSC.……………5分
(II)設(shè)二面角的平面角為θ,由題意可知平面ASD的一個法向量為,設(shè)平面BSC的法向量為,由,
得,
∴ 面ASD與面BSC所成的二面角為45°.……………10分
(III)設(shè)異面直線DM與SB所成角為α,
∵ ,SB=(-1,-1,1),得
∴ 異面直線DM與SB所成角為90°.……………14分
20.解:(1)設(shè)圓心的坐標(biāo)為,如圖過圓心作軸于H,
則H為RG的中點(diǎn),在中,…3分
∵ ∴
即 …………………6分
(2) 設(shè),
直線AB的方程為()則-----①---②
∵點(diǎn)在直線上, ∴.
∴點(diǎn)M的坐標(biāo)為. ………………10分
同理可得:, ,
∴點(diǎn)的坐標(biāo)為. ………………11分
直線的斜率為,其方程為
,整理得,………………13分
顯然,不論為何值,點(diǎn)均滿足方程,
∴直線恒過定點(diǎn).……………………14分
21.解:(Ⅰ)當(dāng)n=1時,D1為Rt△OAB1的內(nèi)部包括斜邊,這時,
當(dāng)n=2時,D2為Rt△OAB2的內(nèi)部包括斜邊,這時,
當(dāng)n=3時,D3為Rt△OAB3的內(nèi)部包括斜邊,這時,……, ---3分
由此可猜想=3n。 --------------------------------------------------4分
下面用數(shù)學(xué)歸納法證明:
(1) 當(dāng)n=1時,猜想顯然成立。
(2) 假設(shè)當(dāng)n=k時,猜想成立,即,() ----5分
如圖,平面區(qū)域為Rt內(nèi)部包括斜邊、平面區(qū)域為
Rt△內(nèi)部包括斜邊,∵平面區(qū)域比平面區(qū)域多3
個整點(diǎn), ------- 7分
即當(dāng)n=k+1時,,這就是說當(dāng)n=k+1時,
猜想也成立,
由(1)、(2)知=3n對一切都成立。 ---------------------8分
(Ⅱ)∵=3n, ∴數(shù)列是首項(xiàng)為3,公差為3的等差數(shù)列,
∴.
-------------------------10分
== -------------------------------11分
∵對一切,恒成立, ∴
∵在上為增函數(shù) ∴ ---13分
,滿足的自然數(shù)為0,
∴滿足題設(shè)的自然數(shù)m存在,其值為0。 -------------------------14分
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com