2009屆高考數(shù)學第三輪復習精編模擬十一

參考公式:

如果事件互斥,那么                                   球的表面積公式

                                   

如果事件相互獨立,那么                            其中表示球的半徑

                                         球的體積公式

如果事件在一次試驗中發(fā)生的概率是,那么         

次獨立重復試驗中事件恰好發(fā)生次的概率           其中表示球的半徑

第一部分 選擇題(共50分)

一.選擇題:本大題共10小題,每小題5分,共50分.在每小題給出的四個選項中,只有一項是符合題目要求的

1、已知映射,其中A=B=R,對應法則,對于實數(shù),在集合A中不存在原象,則的取值范圍是                 (    )w.w.w.k.s.5.u.c.o.m     

試題詳情

       A.          B.          C.             D.

試題詳情

2、某工廠六年來生產(chǎn)某種產(chǎn)品的情況是:前三年年產(chǎn)量的增長速度越來越快,后三年年產(chǎn)量保持不變,則該廠六年來這種產(chǎn)品的可用圖像表示的是 w.w.w.k.s.5.u.c.o.m(  )

試題詳情

 

 

 

 

 

試題詳情

   A.                  B                    C.                  D.

 

試題詳情

3、已知函數(shù)f(x) =3 - 2|x|,g(x) = x2- 2x,構(gòu)造函數(shù)F(x),定義如下:當f(x)≥g(x)時,F(xiàn)(x) = g(x);當f(x)<g(x)時,F(xiàn)(x) =f(x),那么F(x)                              (  )

A.有最大值3,最小值-1            B.有最大值3,無最小值   

C.有最大值7-2,無最小值      D.無最大值,也無最小值

試題詳情

4、記二項式(1+2x)n展開式的各項系數(shù)和為an,其二項式系數(shù)和為bn,則等于           (    )  

       A.1                       B.-1                     C.0                       D.不存在

試題詳情

5、橢圓有這樣的光學性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點,今有一個水平放置的橢圓形臺球盤,點、是它的焦點,長軸長為,焦距為,靜放在點的小球(小球的半徑不計),從點沿直線出發(fā),經(jīng)橢圓壁反彈后第一次回到點時,小球經(jīng)過的路程是                 (    )

試題詳情

A.            B.         C.    D.以上答案均有可能

試題詳情

6、國際上通常用恩格爾系數(shù)來衡量一個國家和地區(qū)人民生活水平狀況,它的計算公式(x:人均食品支出總額,y:人均個人消費支出總額),且,各種類型家庭:

家庭類型

貧困

溫飽

小康

富裕

n

n≥59%

50%≤n<59%

40%≤n<50%

30%≤n<40%

試題詳情

       李先生居住地2002年比98年食品價格下降了7.5%,該家庭在2002年購買食品和98年完全相同的情況下人均少支出75元,則該家庭2002年屬于          (   )              

         (A ) 貧困             ( B) 溫飽                 ( C) 小康                 (D ) 富裕

試題詳情

7、設(shè)0<x<π,則函數(shù)的最小值是                   (    )

試題詳情

A.3            B.2           C           D.2-

試題詳情

8、函數(shù)的圖像關(guān)于原點中心對稱,則(  )

試題詳情

       A.在上為增函數(shù)                B.在上為減函數(shù)

試題詳情

       C.上為增函數(shù),在上為減函數(shù)

試題詳情

       D.在上為增函數(shù),在上也為增函數(shù)

試題詳情

9、若集合A1、A2滿足A1∪A2=A,則稱(A1,A2)為集合A的一個分拆,并規(guī)定:當且僅當A1=A2時,(A1,A2)與(A2,A1)為集合A的同一種分拆,則集合A={a1,a2,a3}?的不同分拆種數(shù)是                                                         (    )

A.27             B.26            C.9               D.8

試題詳情

10、四面體的頂點和各棱的中點共10個點,在其中取4個點,則這四個點不共面的概

率為 (   )

試題詳情

A、           B、         C、        D、

試題詳情

第二部分 非選擇題(共100分)

試題詳情

二、填空題:本大題共5小題,其中14~15題是選做題,考生只能選做一題,兩題全答的,只計算前一題得分.每小題5分,滿分20分.

11、右圖是某保險公司提供的資料,在1萬元以上的保險單中,有

試題詳情

少于2.5萬元,那么不少于2.5萬元的保險單有           萬元.

 

試題詳情

12、定義符號函數(shù)    , 則不等式:的解集是           .

試題詳情

13、給出下列8種圖像變換方法:

試題詳情

①將圖像上所有點的橫坐標縮短為原來的(縱坐標不變);

②將圖像上所有點的橫坐標伸長到原來的2倍(縱坐標不變);

③將圖像上移1個單位;

④將圖像下移1個單位;

試題詳情

⑤將圖像向左平移個單位;

試題詳情

⑥將圖像向右平移個單位;

試題詳情

⑦將圖像向左平移個單位;

試題詳情

⑧將圖像向右平移個單位.

試題詳情

須且只須用上述的3種變換即可由函數(shù)y=sinx的圖像得到函數(shù)的圖像,寫出所有的符合條件的答案為                                        .

試題詳情

14、(坐標系與參數(shù)方程選做題) 已知拋物線,(為參數(shù))設(shè)為坐標原點,點上運動,點是線段的中點,則點的軌跡普通方程為      

試題詳情

15.(幾何證明選講選做題) 如右圖所示,是圓的直徑,

試題詳情

,,則          .

 

 

 

試題詳情

三.解答題:本大題共6小題,共80分,解答應寫出文字說明、證明過程或演算步驟.

16、(本小題滿分12分)

試題詳情

已知向量

試題詳情

       ①;

試題詳情

       ②若

 

 

 

 

 

 

試題詳情

17、(本小題滿分12分)

同時拋擲15枚均勻的硬幣一次

   (1)試求至多有1枚正面向上的概率;

   (2)試問出現(xiàn)正面向上為奇數(shù)枚的概率與出現(xiàn)正面向上為偶數(shù)枚的概率是否相等?

請說明理由.

 

 

 

試題詳情

18、(本小題滿分14分)

試題詳情

規(guī)定其中,為正整數(shù),且這是排列數(shù)是正整數(shù),且的一種推廣.

試題詳情

(Ⅰ)求的值;

試題詳情

(Ⅱ)排列數(shù)的兩個性質(zhì):①,   ②.(其中m,n是正整數(shù))是否都能推廣到是正整數(shù))的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;

試題詳情

(Ⅲ)確定函數(shù)的單調(diào)區(qū)間.

 

 

 

 

 

 

 

試題詳情

19、(本小題滿分14分)

試題詳情

如圖直角梯形OABC中,,SO=1,以O(shè)C、OA、OS分別為x軸、y軸、z軸建立直角坐標系O-xyz.

試題詳情

      (Ⅰ)求的大。ㄓ梅慈呛瘮(shù)表示);

試題詳情

試題詳情

      ①

試題詳情

      ②OA與平面SBC的夾角(用反三角函數(shù)表示);

      ③O到平面SBC的距離.

試題詳情

      (Ⅲ)設(shè)

試題詳情

      ①           

      ②異面直線SC、OB的距離為               .

(注:(Ⅲ)只要求寫出答案).

 

 

 

 

試題詳情

20、(本題滿分14分)

試題詳情

平面上有一系列點對每個自然數(shù),點位于函數(shù)的圖象上.以點為圓心的⊙軸都相切,且⊙與⊙又彼此外切.若,且

試題詳情

  (1)求證:數(shù)列是等差數(shù)列;

試題詳情

(2)設(shè)⊙的面積為,, 求證:

試題詳情

 

 

 

 

 

 

 

 

試題詳情

21、(本題滿分14分)

如圖,設(shè)拋物線方程為x2=2py(p>0),M為 直線y=-2p上任意一點,過M引拋物線的切線,切點分別為A,B.

(Ⅰ)求證:A,M,B三點的橫坐標成等差數(shù)列;

試題詳情

(Ⅱ)已知當M點的坐標為(2,-2p)時,,求此時拋物線的方程;

試題詳情

(Ⅲ)是否存在點M,使得點C關(guān)于直線AB的對稱點D在拋物線上,其中,點C滿足(O為坐標原點).若存在,求出所有適合題意的點M的坐標;若不存在,請說明理由.

 

 

 

 

 

 

 

 

 

 

 

 

試題詳情

一.選擇題:AACBD DCDAD

解析:1:可以判定對應法則是從A到C的函數(shù)(,且是該函數(shù)的值域),于是對于實數(shù),在集合A中不存在原象,則的取值范圍構(gòu)成集合,注意到,故,.

從而答案為A.

2: 前三年年產(chǎn)量的增長速度越來越快,總產(chǎn)量C與時間t(年)的函數(shù)關(guān)系,在圖上反映出來,當時是選項A、C中的形狀;又后三年年產(chǎn)量保持不變,總產(chǎn)量C與時間t(年)的函數(shù)關(guān)系應如選項A所示,于是選A.

3: 利用圖象法求之.其中F(x)= 于是選C

4:由題意得,      于是  于是選B

5:⑴靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁右頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選B;

⑵靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁左頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選C;

⑶靜放在點的小球(小球的半徑不計)從點沿直線出發(fā),經(jīng)橢圓壁非左右頂點反彈后第一次回到點時,小球經(jīng)過的路程是,則選A。

于是三種情況均有可能,故選D。

6:用條件代入計算,不難得到結(jié)論為D.

7:解法一   因ysinx+cosx=2,故

,得 ,于是.   因0<x<π,故y>0.又當時,.若x=,有,故ymin=,選C.

解法二    由已知得:ysinx = 2 - cosx,于是y2(1-cos2x) = (2-cosx)2

將上式整理得:(y2+1)cos2x-4cosx+4-y2=0.于是,ㄓ=16-4(y2+1)(4-y2)=4y2(y2-3)≥0.

因0<x<π,故y>0,于是y≥,而當y=時,ㄓ=0,cosx=,x=滿足題設(shè),于是ymin=,選C.

解法三  設(shè),則,當且僅當

,即,亦即x=時,取“=”,故ymin=,選C.

解法四   如圖,單位圓中,∠MOt = ,P(2,0),M(cosx,sinx),

,故∠AOP=,∠APt =,

,從而,(kPM)min=

8:由于函數(shù)的圖像關(guān)于原點中心對稱,則

為奇函數(shù),于是,,從而,,當,驗正之選D.

9:集合A的子集為共8個,

集合A的一個分拆可以列表如下:

A1

A2

 

A1

A2

, 

,

,

,,,

共有27個,選A.

 10:從10個不同的點中任取4個點的不同取法共有=210種,它可分為兩類:4點共面與不共面.

       如圖1,4點共面的情形有三種:

       ①取出的4點在四面體的一個面內(nèi)(如圖中的AHGC在面ACD內(nèi)),這樣的取法有種;

②取出的4面所在的平面與四面體的一組對棱平行(如圖中的EFGH與AC、BD平行),這種取法有3種(因為對棱共3組,即AC與BD、BC與AD、AB與CD);

③取出的4點是一條棱上的三點及對棱中點(如圖中的AEBG),這樣的取法共6種.

綜上所述,取出4個不共面的點的不同取法的種數(shù)為-(+3+6)=141種.

故所求的概率為,答案選D.

二.填空題:11、91萬元;   12、; 13、②⑦④;    ②④⑦;   ④②⑦;   ⑤②④;   ⑤④②;   ④⑤②.  14、:y2=x;    15、;

解析:

11不少于1萬元的占700萬元的21%, 為700×21%=147萬元.

1萬元以上的保單中,超過或等于2.5萬元的保單占,

金額為×147=91萬元,故不少于2.5萬元的保險單有91萬元。

12原不等式可化為:(1),即;

(2)解得;(3), 綜上得:

13:根據(jù)三角函數(shù)的圖像的變換情況,不難得出下列6種變換:

②⑦④;    ②④⑦;   ④②⑦;   ⑤②④;   ⑤④②;   ④⑤②.

14:依題意有 ,即,消去參數(shù),可得:y2=x

15:連結(jié)AD、DE,則AD=DE, ,又,

,,即=,即

三.解答題:

16.解:(1)      ………………2分

  

       ……………………………………6分

   (2)

①當時,當縣僅當時,取得最小值-1,這與已知矛盾;…8分

②當時,取得最小值,由已知得

;……………………………………………………………10分

③當時,取得最小值,由已知得

  解得,這與相矛盾,綜上所述,為所求。……………………12分

17、解:(1)記“拋擲1枚硬幣1次出現(xiàn)正面向上”為事件A,P(A)=,拋擲15枚硬幣1次相當于作15次獨立重復試驗,根據(jù)次獨立重復試驗中事件A發(fā)生K次的概率公式,記至多有一枚正面向上的概率為P1

則P1= P15(0)+ P15(1)=+=          ……………6分

  (2)記正面向上為奇數(shù)枚的概率為P2,則有

P2= P15(1)+ P15(3)+…+ P15(15)=++…+

        =+…+)?     ………………………10分

又“出現(xiàn)正面向上為奇數(shù)枚”的事件與“出現(xiàn)正面向上為偶數(shù)枚”的事件是對立事件,記“出現(xiàn)正面向上為偶數(shù)枚”的事件的概率為P3

 P3=1?=         

出現(xiàn)正面向上為奇數(shù)枚的概率與出現(xiàn)正面向上為偶數(shù)枚的概率相等   ………12分

18、解:(Ⅰ);                              ……2分

(Ⅱ)性質(zhì)①、②均可推廣,推廣的形式分別是:

,         ②    ……4分

事實上,在①中,當時,左邊,    右邊,等式成立;

時,左邊

            ,  因此,①成立;               ……6分

在②中,當時,左邊右邊,等式成立;

時,

左邊

右邊,

因此  ②成立。                ……8分

(Ⅲ)先求導數(shù),得.

>0,解得x<或 x>.

因此,當時,函數(shù)為增函數(shù),              ……11分
時,函數(shù)也為增函數(shù)。

<0,解得<x<.
因此,當時,函數(shù)為減函數(shù).                ……13分

所以,函數(shù)的增區(qū)間為,

函數(shù)的減區(qū)間為                  ……14分

19、解:(Ⅰ)如圖所示:

C(2,0,0),S(0,0,1),O(0,0,0),B(1,1,0)

………………………………………………………5分

(Ⅱ)①

……………………………………………………………………………8分

,

 

;         ……………………………………14分

20、解:(1)依題意,⊙的半徑,

與⊙彼此外切,

                   …………………………………2分   

    兩邊平方,化簡得     ,

    即      ,           …………………………………4分

     ,             

       ,    ∴ 數(shù)列是等差數(shù)列.     …………………7分

(2) 由題設(shè),,∴,即,          

    ,

   

           …………………………………9分                    

      = ………………12分     

      .    …………………………………14分

 

21:(Ⅰ)證明:由題意設(shè)

       由,則              所以

       因此直線MA的方程為   

直線MB的方程為…………………2分

       所以① 

由①、②得   因此 ,即

所以A、M、B三點的橫坐標成等差數(shù)列. …………………4分

(Ⅱ)解:由(Ⅰ)知,當x0=2時,  將其代入①、②并整理得:

         所以 x1、x2是方程的兩根,

       因此   又  

所以                                     …………………6分

       由弦長公式得

, 所以p=1或p=2,

因此所求拋物線方程為…………………8分

(Ⅲ)解:設(shè)D(x3,y3),由題意得C(x1+ x2, y1+ y2),

        則CD的中點坐標為

       設(shè)直線AB的方程為

       由點Q在直線AB上,并注意到點也在直線AB上,

       代入得

       若D(x3,y3)在拋物線上,則

       因此 x3=0或x3=2x0.

        即D(0,0)或    …………………10分

(1)當x0=0時,則,此時,點M(0,-2p)適合題意. ………………11分

(2)當,對于D(0,0),此時

       又AB⊥CD, 所以………………12分

矛盾.

對于因為此時直線CD平行于y軸,

所以  直線AB與直線CD不垂直,與題設(shè)矛盾,

所以時,不存在符合題意的M點.

綜上所述,僅存在一點M(0,-2p)適合題意. ………………………………14分


同步練習冊答案
<abbr id="cykac"><sup id="cykac"></sup></abbr>
<strike id="cykac"></strike>