陜西延安職院附中09屆高三四月模擬考試試題

命題:  湖北黃岡  李光學(xué)(2009-04-12)

一選擇題(單選題,每題5分,共60分)

1設(shè)函數(shù)f(x)=sin(ωx+φ), 條件P:“f(0)=0”;條件Q:“ f(x)為奇函數(shù)”,則P是Q的(   )

A.充要條件                      B.充分不必要條件  

 C.必要不充分條件                D.既不充分也不必要條件

2已知函數(shù)是偶函數(shù),其定義域?yàn)?sub>,則有

A.                B.        

C.               D.以上都有可能

3已知數(shù)列、分別是公差為1和2的等差數(shù)列,其首項(xiàng)分別為,且,,而都是正整數(shù),則數(shù)列的前10項(xiàng)的和為(    )

A.55      B.65      C.110       D.130

4設(shè)全集,,則

   A.(cos2,           B.[cos2, 1]                 C., 2)                  D., cos2]

5 已知a和b是非零向量,m=a+tb(t∈R),若|a|=1,|b|=2,當(dāng)且僅當(dāng)t=時(shí),|m|取得最小值,則向量a、b的夾角θ為(    )

A.                    B.                         C.                       D.

6已知函數(shù)的值域?yàn)镽,則m的取值范圍是(  )

A.                                                   B.  

C.                                                   D.

7若橢圓的左、右焦點(diǎn)分別為、,線(xiàn)段被拋物線(xiàn)

學(xué)科網(wǎng)(Zxxk.Com)的焦點(diǎn)分成的兩段,則此橢圓的離心率為                (   )學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

       A.                    B.              C.                D.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

8若球O的半徑為1,點(diǎn)A、B、C在球面上,它們?nèi)我鈨牲c(diǎn)的球面距離都等于

則過(guò)點(diǎn)學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)A、B、C的小圓面積與球表面積之比為         (   )                          學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

       A.                    B.                      C.                      D.學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

9將正方體的六個(gè)面染色,有4種不同的顏色可供選擇,要求相鄰的兩個(gè)面不能染同一顏色,則不同的染色方法有(     )

A.256種         B.144種           C.120種      D.96種

10設(shè)為坐標(biāo)原點(diǎn),,若點(diǎn)滿(mǎn)足,則取得最小值時(shí),點(diǎn)的個(gè)數(shù)是                                      (  )學(xué)科網(wǎng)(Zxxk.Com).

A.                 B.                       C.                    D.無(wú)數(shù)個(gè)學(xué)科網(wǎng)(Zxxk.Com).

11已知函數(shù)f (x)=,若方程f (x)=x+a有且只有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍是            (    )

A.               B.                C.             D.

12設(shè)橢圓的左焦點(diǎn)為F,在x軸上F的右側(cè)有一點(diǎn)A,以FA為直徑

圓與橢圓在x軸上方部分交于M、N兩點(diǎn),則的值為(    )

A.                        B.                    C.       D.

二填空題(  每題4分,共16分)

   

13  ABC中,角A、B、C的對(duì)邊分別為a、b、c,且bcosC=3acosB-ccosB,

則sinB=                .

14  已知圓x2+y2-2x+4y+1=0和直線(xiàn)2x+y+c=0,若圓上恰有三個(gè)點(diǎn)到直線(xiàn)

的距離c=            .

15  若, ,,則         .

16  已知命題學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)  ①函數(shù)上是減函數(shù);學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

  ②已知方向上的投影為;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

③函數(shù)的最小正周期為學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

 ④函數(shù)的定義域?yàn)镽, 則是奇函數(shù)的充要條件是;學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

⑤在平面上,到定點(diǎn)的距離與到定直線(xiàn)的距離相等的點(diǎn)的軌跡是拋物線(xiàn)。學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

其中,正確命題的序號(hào)是         . (寫(xiě)出所有正確命題的序號(hào))學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)網(wǎng)

三解答題(共74分)

17  已知向量=(sin(x+),2),=(1,cos (x+)),>0,0<.函數(shù)f(x)=( +)?(-),若y=f(x)的圖像的一個(gè)對(duì)稱(chēng)中心與它相鄰的一條對(duì)稱(chēng)軸之間的距離為1,且過(guò)點(diǎn)M(1,);

(1) 求y=f(x)的解析式

 (2)當(dāng)-1≤x≤1,求函數(shù)f(x)的單調(diào)區(qū)間

 

 

 

 

 

18  已知梯形中,,,   ,、分別是上的點(diǎn),,,的中點(diǎn).沿將梯形翻折,使平面⊥平面 (如圖) .                            

(Ⅰ) 當(dāng)時(shí),求證: ;

(Ⅱ) 若以、、、為頂點(diǎn)的三棱錐的體積記為 ,求的最大值;

 學(xué)科網(wǎng)(Zxxk.Com).

 

 

 

 

 

 

19 一個(gè)口袋中裝有個(gè)紅球(≥5且)和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球的顏色不同則為中獎(jiǎng).

(1)試用表示一次摸獎(jiǎng)中獎(jiǎng)的概率;

(2)記從口袋中三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率為。試問(wèn)當(dāng)等于多少時(shí),的值最大?

 

 

20  某民營(yíng)企業(yè)生產(chǎn)兩種產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資成正比,其關(guān)系如圖1,產(chǎn)品的利潤(rùn)與投資的算術(shù)平方根成正比,其關(guān)系如圖2(注:利潤(rùn)與投資單位:萬(wàn)元)

    • <menu id="i0xab"><tt id="i0xab"><dl id="i0xab"></dl></tt></menu><table id="i0xab"><ins id="i0xab"></ins></table>
    • <var id="i0xab"><ins id="i0xab"></ins></var>
        • <code id="i0xab"></code>

          圖2

          4

          2.5

          3.75

          y

          o

          圖1

          1.8

          1

          0.25

          0.45

          y

          o

          (I)分別將、兩種產(chǎn)品的利潤(rùn)表示為投資的函數(shù)關(guān)系式,并寫(xiě)出它們的函數(shù)關(guān)系式;

          (II)該企業(yè)現(xiàn)已籌集到10萬(wàn)元資金,并準(zhǔn)備全部投入、兩種產(chǎn)品的生產(chǎn),問(wèn):怎樣分配這10萬(wàn)元投資,才能使企業(yè)獲得最大利潤(rùn),其最大利潤(rùn)為多少萬(wàn)元?

           

           

          21  對(duì)負(fù)實(shí)數(shù),數(shù)依次成等差數(shù)列

          (1)       求的值;

          (2)       若數(shù)列滿(mǎn)足的通項(xiàng)公式;

          (3)       在(2)的條件下,若對(duì)任意,不等式恒成立,求的取值范圍。

           

           

          22   已知A(-1,0)、B(3,0),M、N是圓O:x2+y2=1上的兩個(gè)動(dòng)點(diǎn),且M、N關(guān)于x軸對(duì)稱(chēng),直線(xiàn)AM

          與BN交于P點(diǎn).

          ⑴求P點(diǎn)的軌跡C的方程;

          ⑵設(shè)動(dòng)直線(xiàn)l:y=k(x+)與曲線(xiàn)C交于S、T兩點(diǎn).

          求證:無(wú)論k為何值時(shí),以動(dòng)弦ST為直徑的圓總與定直線(xiàn)x=-相切。

          一   1~5              6~10            11~12

             ABCAC           DDCDB          AA

          二 13         14 ±5        15        16  ②③學(xué)科網(wǎng)(Zxxk.Com)學(xué)科網(wǎng)

          三  17解(1)

          由題意得周期,故

          又圖象過(guò)點(diǎn),所以

          ,而,所以    

          (2)當(dāng)時(shí),

          ∴當(dāng)時(shí),即時(shí),是減函數(shù)

          當(dāng)時(shí),即時(shí),是增函數(shù)

          ∴函數(shù)的單調(diào)減區(qū)間是,單調(diào)增區(qū)間是

          18解:(Ⅰ)(法一)作,連,  

          由平面平面知  平面

          平面,故又四邊形為正方形             ∴  

          ,故平面  而平面    ∴  .     

          (或者直接利用三垂線(xiàn)定理得出結(jié)果)

          (Ⅱ) ∵ ,面   ∴

          又由(Ⅰ)平面   ∴          

          所以

                

          時(shí)有最大值為

          (Ⅲ)(法一)作,作,連

          由三垂線(xiàn)定理知∴  是二面角的平面

          角的補(bǔ)角    由,知

          ∴  又

          ∴ 在中,

          因?yàn)椤鲜?sub>銳角   ∴   而∠是二面角的平面角的補(bǔ)角

          故二面角的余弦值為-.

          (法二)∵  平面平面   ∴ ⊥面平面

          , ,又

          故可如圖建立空間坐標(biāo)系.則∴  ∴   .  

          (Ⅱ) ∵ ,面   ∴

          又由(Ⅰ)平面   ∴          

          所以

                

          時(shí)有最大值為

          (Ⅲ)設(shè)平面的法向量為∵  ,, 

          ∴   則     即

            則    ∴    面的一個(gè)法向量為

          <>  由于所求二面角的平面角為鈍角

          所以,此二面角的余弦值為-

          19  (1)一次摸獎(jiǎng)從個(gè)球中任取兩個(gè),有種方法。它們是等可能的,其中兩個(gè)球的顏色不同的方法有種,一次摸獎(jiǎng)中獎(jiǎng)的概率                                   

              (2)設(shè)每次摸獎(jiǎng)中獎(jiǎng)的概率為,三次摸獎(jiǎng)中(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率是,

                   因而上為增函數(shù),

          上為減函數(shù),                                  

          ∴當(dāng)時(shí)取得最大值,即,解得(舍去),則當(dāng)時(shí),三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)恰有一次中獎(jiǎng)的概率最大.

           

          20   解 (I)設(shè)投資為萬(wàn)元,產(chǎn)品的利潤(rùn)為萬(wàn)元,產(chǎn)品的利潤(rùn)為萬(wàn)元,

          由題設(shè),,由圖知,,又,,

          從而: 

          (II)設(shè)產(chǎn)品投入萬(wàn)元,則產(chǎn)品投入萬(wàn)元,設(shè)企業(yè)利潤(rùn)為萬(wàn)元

                  

          ,則,

          當(dāng)時(shí),(萬(wàn)元),此時(shí)  

          當(dāng)產(chǎn)品投入萬(wàn)元,產(chǎn)品投入萬(wàn)元時(shí),企業(yè)獲得最大利潤(rùn)為萬(wàn)元

          21    (1)依題意有 

          即     解得

                                           

          (2)式子即為;

                                                 

           

          數(shù)列是以為首項(xiàng),為公差的等差數(shù)列,

                                      

          (3)       由對(duì)恒成立得

           對(duì)恒成立得

          ,兩邊同除

                                   

          對(duì)恒成立

          時(shí),取最小值                                       

          22   解    ⑴設(shè)M(x0,y0),則N(x0,-y0),P(x,y)

          AM:y=   ①

          BN:y=  、诼(lián)立①②  ∴                                       

          ∵點(diǎn)M(xo,yo)在圓⊙O上,代入圓的方程:

          整理:y2=-2(x+1)  (x<-1)                                                                            

          ⑵由

          設(shè)S(x1、y1),T(x2、y2),ST的中點(diǎn)坐標(biāo)(x0、y0)

          則x1+x2=-(3+)       x1x2                                                           

          中點(diǎn)到直線(xiàn)的距離

          故圓與x=-總相切.                                                                      

          ⑵另解:∵y2=-2(x+1)知焦點(diǎn)坐標(biāo)為(-,0)                                                 

          頂點(diǎn)(-1,0),故準(zhǔn)線(xiàn)x=-                                                                            

          設(shè)S、T到準(zhǔn)線(xiàn)的距離為d1,d2,ST的中點(diǎn)O',O'到x=-的距離為

          又由拋物線(xiàn)定義:d1+d2=|ST|,∴

          故以ST為直徑的圓與x=-總相切                                                                    

           


          同步練習(xí)冊(cè)答案