海淀區(qū)高三年級第一學期期中練習
數(shù) 學(文科) 2008.11
學校 班級 姓名
題號
一
二
三
總分
(15)
(16)
(17)
(18)
(19)
(20)
分數(shù)
一、選擇題:本大題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.
(2)函數(shù)f (x)=x2-1(x>0)的反函數(shù)是
( )
(A)f -1(x)=(x>-1) (B)f -1(x)=(x>0)
(C)f -1 (x)=-(x>-1) (D)f -1 (x)=-(x>0)
(3)已知a∈R,則“|a|>
(A)充分而不必要條件 (B)必要而不充分條件
(C)充分必要條件 (D)既不充分也不必要條件
(4)從6名男生和2名女生中選出3名志愿者,其中至少有1名女生的選法共有 ( )
(A)30種 (B)36種 (C)42種 (D)60種
(5)下列函數(shù)中既是奇函數(shù),又在[-1,1]上是增函數(shù)的是 ( )
(A)y=2x (B)y=- (C)y=-sinx (D)y=x3+2x
(6)函數(shù)f (x)=2|x-1|的圖象是
( )
(A)
(B) (C)
(D)
(7)已知數(shù)列{an}的前n項的和Sn=an-1(a是不為0的實數(shù)),那么{an} ( )
(A)一定是等差數(shù)列
(B)一定是等比數(shù)列
(C)或者是等差數(shù)列,或者是等比數(shù)列
(D)既不可能是等差數(shù)列,也不可能是等比數(shù)列
(8)定義在R上的函數(shù)f (x),如果存在函數(shù)g (x)=kx+b(k,b為常數(shù)),使得f (x)≥g (x)對一切實數(shù)x都成立,則稱g (x)為函數(shù)f (x)的一個承托函數(shù).現(xiàn)有如下命題:
①對給定的函數(shù)f (x),其承托函數(shù)可能不存在,也可能有無數(shù)個;
②g(x)=2x為函數(shù)f (x)=2x的一個承托函數(shù);
③定義域和值域都是R的函數(shù)f (x)不存在承托函數(shù).
其中正確命題的序號是 ( )
(A)① (B)② (C)①③ (D)②③
(9)已知1,x,9成等比數(shù)列,則實數(shù)x等于 .
二、填空題:本大題共6小題,每小題5分,共30分,把答案填在題中橫線上.
(10)(x2+)5的展開式中x4的系數(shù)是 . (用數(shù)字作答)
(11)函數(shù)f (x)=+log2(2x-1)的定義域是 .
(12)已知等差數(shù)列{an}中,Sn表示其前n項和,且S1=1,S19=95,則a19=
,
S10= .
(13)為了了解某地區(qū)高三學生的身體發(fā)育 情況,抽查了該地區(qū)100名年齡為 17.5歲至18歲的男生的體重情況,并 將統(tǒng)計結果畫成頻率分布直方圖(如 圖),則此100名男生中體重在 [58.5,64.5)kg的共有 人.
(14)已知關于x的不等式x2-ax+2>0,若此不等式對于任意的x∈R恒成立,則實數(shù)a的取值范圍是 ;若此不等式對于任意的x∈(2,3]恒成立,則實數(shù)a的取值范圍是
.
三、解答題:本大題共6小題,共80分.解答應寫出文字說明,證明過程或演算步驟.
(15)(本小題共12分)
已知全集U=R,不等式<0的解集為A,不等式|x-2|<l的解集為B.
(Ⅰ)求A,B;
(Ⅱ)求(UA)∩B.
(16)(本小題共13分)
已知函數(shù)f (x)=x3+ax2+2,且f (x)的導函數(shù)f ′ (x)的圖象關于直線x=1對稱.
(Ⅰ)求導函數(shù)f ′ (x)及實數(shù)a的值;
(Ⅱ)求函數(shù)y=f
(x)在[-1,2]上的最大值和最小值.
(17)(本小題共14分)
現(xiàn)有24名學生(學號依次為1號到24號),參加一次扎染藝術活動,每人染一件形狀大小都相同的布藝作品.要求:學號是6的倍數(shù)的同學領藍色染料,學號為8的倍數(shù)的 同學領黃色染料,其余同學只能領紅色染料,其中能同時領到藍色和黃色染料的同學,必須把這兩種染料混合成綠色染料進行扎染.
(Ⅰ)求任取一件作品顏色為綠色的概率;
(Ⅱ)求任取一件作品顏色為紅色的概率;
(Ⅲ)任取一件作品記下顏色后放回,求連續(xù)取三次至少有兩次取出的作品顏色為紅色的
概率.
(18)(本小題共13分)
數(shù)列{an}[滿足a1=-1,且an=3an-1-2n+3(n=2,3,…).
(Ⅰ)求a2,a3,并證明數(shù)列{an-n}是等比數(shù)列;
(Ⅱ)求a1+a2+a3+…+an的值.
(19)(本小題共14分)
已知函數(shù)f (x)=x3+bx2+cx+5,且曲線y=f
(x)在點(0,f (0))處的切線與x軸平行.
(Ⅰ)求實數(shù)c的值;
(Ⅱ)判斷是否存在實數(shù)b,使得方程f (x)-b2x=0恰有一個實數(shù)根.若存在,求b的取值范圍;若不存在,請說明理由.
(20)(本小題共14分)
設f (x)是定義在D上的函數(shù),若對D中的任意兩個實數(shù)x1,x2(x1≠x2),恒有
f (x1+x2)<f (x1)+f (x2),則稱f (x)為定義在D上的T函數(shù).
(Ⅰ)試判斷函數(shù)f (x)=x2是否為其定義域上的T函數(shù),并說明理由;
(Ⅱ)若函數(shù)f (x)是R上的奇函數(shù),試證明f (x)不是R上的T函數(shù);
(Ⅲ)若對任何實數(shù)α∈(0,1)以及D中的任意兩個實數(shù)x1,x2,恒有
f (αx1+(1-α)x2)≤αf (x1)+(1-α)f (x2),則f (x)為定義在D上的C函數(shù).已知f (x)是R上的C函數(shù),m是給定的正整數(shù),設an=f(n)(n=0,1,2,…,m),且a0=0,am=
海淀區(qū)高三年級第一學期期中練習
數(shù) 學(文科) 2008.11
一、選擇題(本大題共8小題,每小題5分,共40分)
題號
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
答案
B
A
C
B
D
B
C
A
二、填空題(本大題共6小題,每小題5分,共30分.第一個空3分,第二個空2分)
(9)±3(丟一個不給分) (10)10 (11)
(12)9,30 (13)34 (14)(-2,2),(-∞,3]
三、解答題(本大題共6小題,共80分.解答應寫出文字說明,證明過程或演算步驟)
(15)(本小題滿分12分)
解:(Ⅰ)由<0.
得-2<x<2.
∴A={x|-2<x<2}.……………………………………………………………3分
由|x-2|<1.
得1<x<3.
∴B={x|l<x<3}.…………………………………………………………………6分
(Ⅱ)∵A={x|-2<x<2},U=R,
∴UA={x|x≤-2或x≥2}.……………………………………………………9分
∴(U A)∩B={x|2≤x<3}.……………………………………………………12分
(16)(本小題滿分13分)
解:(Ⅰ)由f (x)=x3+ax2+2得
f ′ (x)=3x2+2ax.………………………………………………………………………………3分
∵f ′ (x)圖象關于直線x=l對稱,
∴-=1.
∴a=-3.……………………………………………………………………………………6分
(Ⅱ)由(Ⅰ)知f (x)=x3-3x2+2,f ′ (x)=3x2-6x.
令f ′ (x)=0得x1=0,x2=2.……………………………………………………………8分
當x在[-1,2]上變化時,f ′ (x),f (x)的變化情況如下表
x
-1
(-1,0)
0
(0,2)
2
f ′ (x)
+
0
-
0
f (x)
-2
ㄊ
2
ㄋ
-2
……………………………………………………………………………………………12分
由上表可知,當x=-1或2時,函數(shù)有最小值-2,當x=0時,函數(shù)有最大值2.
……………………………………………………………………………………………13分
(17)(本小題滿分14分)
解:(Ⅰ)設任取一件作品顏色為綠色的事件為A. ………………………………………1分
P(A)=.………………………………………………………………………………… 4分
答:任取一件作品顏色為綠色的概率為.
(Ⅱ)設任取一件作品顏色為紅色的事件為B ……………………………………………5分
P(B)=1-………………………………………………………………………… 7分
=l-=.……………………………………………………………………………… 8分
答:任取一件作品顏色為紅色的概率為.
(Ⅲ)設任取一件作品記下顏色后放回,連續(xù)取三次至少有兩件作品為紅色的
事件為C.……………………………………………………………………………………9分
P(C)=()2()+()3()0………………………………13分(其中兩個算式各2分)
=.…………………………………………………………………………………14分
答:任取一件作品記下顏色后放回,連續(xù)取三次至少有兩件作品為紅色的概率為.
(18)(本小題滿分13分)
解:(Ⅰ)∵a1=-1,且an=3an-l-2n+3,(n=2,3,…)
∴a2=3al-4+3=-4,…………………………………………………………… 2分
a3=
當n≥2時,有
an-n=3an-1-2n+3-n=3(an-1-n+1) …………………………………………6分
且a1-1=-2≠0,…………………………………………………………………7分
所以數(shù)列{an-n}(n=1,2,…)是一個以-2為首項,3為公比的等比數(shù)列……
……………………………………………………………………………………8分
(Ⅱ)由(Ⅰ)可得an-n=-2?3n-1,
∴an=n-2?3n-1……………………………………………………………………9分
∴a1+a2+a3+…+an=(1-2×1)+(2-2×3)+(3-2×32)+…+(n-2×3n-1)
=(1+2+3+…+n)-(2×1+2×3+2×32+…+2×3n-1) ………………………11分
=.……………………………………………13分
(19)(本小題滿分14分)
解:(Ⅰ)∵曲線y=f (x)在點(0,f (0))處的切線與x軸平行,
∴f (0)=0. ………………………………………………………………………………2分
又f ′ (x)=3x2+2bx+c,則f ′ (0)=c=0.…………………………………………………4分
(Ⅱ)由c=0,方程f (x)-b2x=0可化為x3+bx2-b2x+5=0,
假設存在實數(shù)b使得此方程恰有一個實數(shù)根,
令g (x)=x3+bx2-b2x+5,則g (x)極大值<0或g (x)極小值>0.
∴g′ (x)=3x2+2bx-b2=(3x-b)(x+b).
令g′ (x)=0,得x1=,x2=-b.……………………………………………………5分
①若b=0,則方程f (x)-b2x=0可化為x3+5=0,此方程恰有一個實根
x=-.………………………………………………………………………………6分
②若b>0,則>-b,列表:
x
(?∞,?b)
-b
(-b,)
(,+∞)
g′ (x)
+
0
-
0
+
g (x)
ㄊ
極大值
ㄋ
極小值
ㄊ
∴g (x)極大值=g(-b)=b3+5>0,g (x)極小值=g ()=-+5.
∴-+5>0,解之得0<b<3. ……………………………………………………9分
③若b<0,則<-b,列表:
x
(?∞,)
(,-b)
-b
(-b,+∞)
g′ (x)
+
0
-
0
+
g (x)
ㄊ
極大值
ㄋ
極小值
ㄊ
∴g (x)極大值=g ()=-+5>0,g (x)極小值=g(-b)=b3+5.
∴b3+5>0,解之得b>-.
∴-<b<0. …………………………………………………………………………12分
綜合①②③可得,實數(shù)b的取疽范圍是(-,3).…………………………………14分
(20)(本小題滿分14分)
解:(Ⅰ)f (x)=x2是其定義域上的T函數(shù),………………………………………………2分
證明如下:
對任意實數(shù)x1,x2(x1≠x2),
有f (x1+x2)-f (x1)-f(x2)
=(x1+x2)2--
=-(x1-x2)2<0.
即f (x1+x2)<f (x1)+f (x2).
∴f(x)=x2是其定義域上的T函數(shù).……………………………………………………4分
(Ⅱ)假設f (x)是R上的T函數(shù),取x1=1,x2=-1,
則有f (×1+×(-1))<f (1)+f (-1).
∵f (x)是奇函數(shù),
∴f (-1)=-f (1),f (?)=-f().
∴f()>f (1).(#)
同理,取x1=-1,x2=1,可證f ()<f (1).
與(#)式矛盾.
∴f (x)不是R上的T函數(shù).……………………………………………………………9分
(Ⅲ)對任意0≤n≤m,取x1=m,x2=0,α=∈[0,1].
∵f (x)是R上的C函數(shù),an=f (n),且a0=0,am=
∴an=f (n)=f (αx1+(1-α)x2)≤αf (x1)+(1-α)f
(x2)=×
那么Sf=a1+a2+…+am≤(2×(1+2+…+m)=m2+m.
可證f (x)=2x是C函數(shù),且使得an=2n (n=0,l,2,…,m)都成立,
此時Sf=m2+m.
綜上所述,Sf的最大值為m2+m.………………………………………………………14分
說明:其他正確解法按相應步驟給分.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com