安徽省蚌埠市2009屆高三第二次教學(xué)質(zhì)量檢查考試

文 科 數(shù) 學(xué)2009.0319

本試卷分第Ⅰ卷(選擇題)和第Ⅱ卷(非選擇題)兩部分,共150分,考試時間120分鐘

參考公式:,其中表示球的半徑   如果事件A在一次試驗(yàn)中發(fā)生的概率為P ,那么n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k次的概率

第Ⅰ卷(選擇題,共60分)

一、選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的A、B、C、D的四個選項(xiàng)中,只有一個選項(xiàng)是符合題目要求的,請將正確答案的字母代號涂到答題卡上。

1、 設(shè)全集,則

試題詳情

A、       B、    C、    D、

試題詳情

2、已知,則

試題詳情

A、2         B、       C、 3        D、  

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

試題詳情

 3、已知冪函數(shù)的部分對應(yīng)值如下表:

試題詳情

則不等式的解集是

試題詳情

A、      B、

試題詳情

C、   D、

試題詳情

4、復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于

A、第一象限   B、第二象限    C、第三象限    D、第四象限

試題詳情

5、如圖,直三棱柱的主視圖面積為,則左視圖的面積為

試題詳情

A、    B、   C、  D、

試題詳情

6、已知蟑螂活動在如圖所示的平行四邊形OABC 內(nèi),現(xiàn)有一種

利用聲波消滅蟑螂的機(jī)器,工作時,所發(fā)出的圓弧型聲波DFE從

坐標(biāo)原點(diǎn)O向外傳播,若D是DFE弧與x軸的交點(diǎn),設(shè)OD=x,

試題詳情

,圓弧型聲波DFE在傳播過程中掃過平行四邊形OABC

試題詳情

的面積為y(圖中陰影部分),則函數(shù)的圖像大致是

 

 

試題詳情

7、已知雙曲線的中心在原點(diǎn),右焦點(diǎn)與拋物線的焦點(diǎn)重合,則該雙曲線的離心率等于

試題詳情

A、    B、     C、       D 、

試題詳情

8、平面向量共線的充要條件是

試題詳情

A、方向相同     B、 兩向量中至少有一個為零向量

試題詳情

C、   D、存在不為零的實(shí)數(shù)

試題詳情

9、已知等比數(shù)列的前n項(xiàng)和胃,則的值為

試題詳情

A、               B、          C、           D、

試題詳情

10、正三棱柱體積為V,則其表面積最小時,底面邊長為

試題詳情

A、      B、      C、         D

試題詳情

11、在求方程在[0,1]內(nèi)的近似解時,用“二分法”計(jì)算到達(dá)到精確度要求,那么所取誤差限

試題詳情

A、 0.05        B、0.005       C、0.0005       D、0.00005

試題詳情

12、如圖,已知從點(diǎn)射出的光線經(jīng)直線

AB反向后再射到直線OB上,最后經(jīng)直線OB反射后又回到P

點(diǎn),則光線所經(jīng)過的路程是

試題詳情

A、6          B、          C、         D、

第Ⅱ卷(非選擇題,共90分)

試題詳情

二、填空題:本大題共4小題,每小題4分,共16分,請將答案直接填在答題卡上。

13、200輛汽車正在經(jīng)過某一雷達(dá)區(qū),這些汽車運(yùn)

行的時速頻率分布直方圖如圖所示,則時速超過

60km/h的汽車數(shù)量約為________________.

試題詳情

14、若實(shí)數(shù)滿足

最小值為________.

 

 

 

 

試題詳情

15、定義某種運(yùn)算,運(yùn)算原理如圖所示,

試題詳情

則函數(shù)的值域?yàn)開_________________.

試題詳情

16、對于△ABC,有如下命題:

試題詳情

(1)若,則△ABC一定為

等腰三角形。

試題詳情

(2)若,△ABC一定為等腰三角形。

試題詳情

(3)若,則△ABC一

定為鈍角三角形。

試題詳情

(4)若,ZE△ABC一定為銳角三角形。

則其中正確命題的序號是_________。(把所有正確的命題序號都填上)

試題詳情

三、解答題:本大題共6小題,共74分。解答須寫出說明、證明過程和演算步驟。

17、(本小題滿分12分)

試題詳情

已知函數(shù)

(Ⅰ)求函數(shù)的最小正周期和最小值;

試題詳情

(Ⅱ)求函數(shù)在上的單調(diào)遞增區(qū)間。

 

試題詳情

18、(本小題滿分12分)

試題詳情

已知之間的一組數(shù)據(jù)如下表:

x

1

3

6

7

8

y

1

2

3

4

5

試題詳情

 (Ⅰ)從中各取一個數(shù),求的概率;

試題詳情

(Ⅱ)對于表中數(shù)據(jù),甲、乙兩同學(xué)給出的擬合直線分別為,試?yán)米钚《朔ㄅ袛嗄臈l直線擬合程度更好?

 

試題詳情

19、(本小題滿分12分)

試題詳情

如圖,等腰直角△ABC中,ABC,EA平面ABC,F(xiàn)C//EA,EA = FC = AB =

試題詳情

(Ⅰ)求證:AB 平面BCF;

(Ⅱ)證明五點(diǎn)A、B、C、E、F在同一個球面上,

并求A、F兩點(diǎn)的球面距離。

 

 

 

 

 

 

 

試題詳情

20、(本小題滿分12分)

試題詳情

已知函數(shù)上是增函數(shù)。

試題詳情

(Ⅰ)求的取值范圍;

試題詳情

(Ⅱ)在(Ⅰ)的結(jié)論下,設(shè),求函數(shù)的最小值。

 

 

試題詳情

21、(本小題滿分12分)

試題詳情

設(shè)是橢圓上的兩點(diǎn),已知,若,橢圓的離心率,短軸長為2,為坐標(biāo)原點(diǎn)。

(Ⅰ)求橢圓的方程;

(Ⅱ)若直線AB過橢圓的焦點(diǎn)F(0,c),(c為半焦距),求直線AB 的斜率k的值。

 

 

 

 

試題詳情

22、(本小題滿分14分)

試題詳情

數(shù)列和數(shù)列由下列條件確定:

試題詳情

;

試題詳情

②當(dāng)時,滿足如下條件:當(dāng)時,;當(dāng)時,。

解答下列問題:

試題詳情

(Ⅰ)證明數(shù)列是等比數(shù)列;

試題詳情

(Ⅱ)求數(shù)列的前n項(xiàng)和為

 

 

 

蚌埠市第二次教學(xué)質(zhì)量檢查考試文科數(shù)學(xué)答案

題號

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

C

A

D

C

D

A

D

C

B

C

C

試題詳情

二、填空題

13、76    14、0     15、      16、(2)  (3)  (4)

試題詳情

三、解答題

17、解:(Ⅰ)

試題詳情

試題詳情

,當(dāng)時,的最小值

試題詳情

(Ⅱ)由于,故。由,得

試題詳情

,得

試題詳情

所以函數(shù)在上的單調(diào)增區(qū)間為

試題詳情

18、解:(Ⅰ)從各取一個數(shù)組成數(shù)對共有25對,其中滿足的有(6,4),(6,5),(7,3),(7,4),(7,5),(8,2),(8,3),(8,4),(8,5)共9對

試題詳情

故所求的概率為,所以使的概率是

試題詳情

(Ⅱ)用作為擬合直線時,所得值與y的實(shí)際值的差的平方和為

試題詳情

作為擬合直線時,所得值與y的實(shí)際值的差的平方和為

試題詳情

試題詳情

,故用直線擬合程度更好

試題詳情

19、解:(Ⅰ)∠ABC,又EA平面ABC,F(xiàn)C//EA

試題詳情

所以平面

試題詳情

(Ⅱ)易證△ABF為直角三角形,且∠ABF=,記EC與AF交于點(diǎn)O,則由四邊形ACFE是矩形知OA=OE=OF=OC=OB=AF,故五點(diǎn)A、B、C、E、F在以O(shè)為球心,AF為直徑的球面上,故A、F兩點(diǎn)之間的球面距離就是半個大圓的弧長,是

試題詳情

20、解:(Ⅰ)! 在(0,1)上 是增函數(shù),

試題詳情

在(0,1)上恒成立,即

試題詳情

(當(dāng)且僅當(dāng)時取等號),所以。

試題詳情

(Ⅱ)設(shè),則(顯然

試題詳情

當(dāng)時,在區(qū)間[1,3]上是增函數(shù),所以h(t)的最小值為。

試題詳情

當(dāng)時,

試題詳情

因?yàn)楹瘮?shù)h(t)在區(qū)間是增函數(shù),在區(qū)間是也是增函數(shù),又h(t)在[1,3]上為連續(xù)函數(shù),所以h(t)在[1,3]上為增函數(shù),所以h(t)的最小值為h(1)=

試題詳情

試題詳情

21、解:(Ⅰ)

試題詳情

橢圓方程為

試題詳情

(Ⅱ)(1)當(dāng)直線AB斜率不存在時,即, ,又在橢圓上,所以

試題詳情

,所以三角形的面積為定值。

試題詳情

(2)由題意設(shè)直線的方程為

試題詳情

,得到

試題詳情

,

試題詳情

,  解得:

試題詳情

所以三角形的面積為定值。

試題詳情

22、(Ⅰ)當(dāng)時,

試題詳情

當(dāng)時,

試題詳情

所以不論哪種情況,都有,又顯然,

試題詳情

故數(shù)列是等比數(shù)列

試題詳情

(Ⅱ)由(Ⅰ)知,,故

試題詳情

試題詳情

所以,

試題詳情

所以,,

試題詳情

 

 

試題詳情


同步練習(xí)冊答案