2.定義矩陣方冪運算:設(shè)A是一個 的矩.若. 求(1)., (2)猜測.并用數(shù)學歸納法證明. 查看更多

 

題目列表(包括答案和解析)

(本題滿分15分)設(shè)橢圓 C1)的一個頂點與拋物線 C2 的焦點重合,F(xiàn)1,F(xiàn)2 分別是橢圓的左、右焦點,離心率 ,過橢圓右焦點 F2 的直線  與橢圓 C 交于 M,N 兩點.

(I)求橢圓C的方程;

(II)是否存在直線 ,使得 ,若存在,求出直線  的方程;若不存在,說明理由;

(III)若 AB 是橢圓 C 經(jīng)過原點 O 的弦,MN//AB,求證: 為定值.

 

查看答案和解析>>

(本題滿分15分) 已知拋物線的頂點是橢圓的中心,焦點與該橢圓的右焦點重合.

(1)求拋物線的方程;

(2)已知動直線過點,交拋物線、兩點.

若直線的斜率為1,求的長;

是否存在垂直于軸的直線被以為直徑的圓所截得的弦長恒為定值?如果存在,求出的方程;如果不存在,說明理由.

 

查看答案和解析>>

22.(本題滿分15分)已知拋物線C的頂點在原點,焦點在y軸正半軸上,點到其準線的距離等于5.

(Ⅰ)求拋物線C的方程;

(Ⅱ)如圖,過拋物線C的焦點的直線從左到右依次與拋物線C及圓交于A、C、D、B四點,試證明為定值;

 
(Ⅲ)過A、B分別作拋物C的切線交于點M,求面積之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本題滿分15分)如圖,分別過橢圓E左右焦點、的動直線l1、l2相交于P點,與橢圓E分別交于A、BC、D不同四點,直線OA、OBOC、OD的斜率、、滿足.已知當l1x軸重合時,,

(Ⅰ)求橢圓E的方程;

(Ⅱ)是否存在定點MN,使得為定值.若存在,求出M、N點坐標,若不存在,說明理由.

 

查看答案和解析>>

(本題滿分15分)如圖,已知直線與拋物線和圓都相切,的焦點.

(1)求的值;

(2)設(shè)上的一動點,以為切點作拋物線的切線,直線軸于點,以為鄰邊作平行四邊形,證明:點在一條定直線上;

(3)在(2)的條件下,記點所在的定直線為,直線軸交點為,連接交拋物線兩點,求的面積的取值范圍.

 

 

查看答案和解析>>


同步練習冊答案