24.解:(1)因?yàn)閒(-x)=log2= log2= log2()-1=-f(x).所以函數(shù)f(x)是奇函數(shù).(2)f(x)在上是增函數(shù). 查看更多

 

題目列表(包括答案和解析)

仔細(xì)閱讀下面問(wèn)題的解法:
設(shè)A=[0,1],若不等式21-x+a>0在A上有解,求實(shí)數(shù)a的取值范圍.
解:令f(x)=21-x+a,因?yàn)閒(x)>0在A上有解.
⇒f(x)在A上的最大值大于0,
又∵f(x)在[0,1]上單調(diào)遞減
⇒f(x)最大值=f(0)

=2+a>0⇒a>-2
學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).
①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;
②設(shè)B={x|lg
10-x
10+x
>lg(2x+a-5)}
,若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

設(shè)函數(shù)f(x)=lnx,gx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來(lái)源:學(xué)?。網(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來(lái)源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問(wèn)解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問(wèn),由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

解:因?yàn)?i>f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時(shí),,有;當(dāng)時(shí),,有;當(dāng)x=1時(shí),,有

 

查看答案和解析>>

解::因?yàn)?img width=364 height=41 src="http://thumb.zyjl.cn/pic1/1899/sx/151/231751.gif">,所以f(1)f(2)<0,因此f(x)在區(qū)間(1,2)上存在零點(diǎn),又因?yàn)閥=與y=-在(0,+)上都是增函數(shù),因此在(0,+)上是增函數(shù),所以零點(diǎn)個(gè)數(shù)只有一個(gè)方法2:把函數(shù)的零點(diǎn)個(gè)數(shù)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為判斷方程解的個(gè)數(shù)問(wèn)題,近而轉(zhuǎn)化成判斷交點(diǎn)個(gè)數(shù)問(wèn)題,在坐標(biāo)系中畫(huà)出圖形


由圖看出顯然一個(gè)交點(diǎn),因此函數(shù)的零點(diǎn)個(gè)數(shù)只有一個(gè)

袋中有50個(gè)大小相同的號(hào)牌,其中標(biāo)著0號(hào)的有5個(gè),標(biāo)著n號(hào)的有n個(gè)(n=1,2,…9),現(xiàn)從袋中任取一球,求所取號(hào)碼的分布列,以及取得號(hào)碼為偶數(shù)的概率.

查看答案和解析>>

仔細(xì)閱讀下面問(wèn)題的解法:

設(shè)A=[0,1],若不等式21x+a>0在A上有解,求實(shí)數(shù)a的取值范圍.

解:令f(x)=21x+a,因?yàn)閒(x)>0在A上有解。

=2+a>0a>-2

學(xué)習(xí)以上問(wèn)題的解法,解決下面的問(wèn)題,已知:函數(shù)f(x)=x2+2x+3(-2≤x≤-1).

①求f(x)的反函數(shù)f-1(x)及反函數(shù)的定義域A;

②設(shè)B=,若A∩B≠,求實(shí)數(shù)a的取值范圍.

 

查看答案和解析>>

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒(méi)有零點(diǎn),所以方程無(wú)根,則函數(shù)y=x+|x-c|與y=2沒(méi)有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱(chēng)有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>


同步練習(xí)冊(cè)答案