在平面上作一條直線.使得平面上三個已知點到這條直線的距離之和達到最小. 第二試 查看更多

 

題目列表(包括答案和解析)

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點,滿足:過點P分別作圓C1與圓C2的一條切線,切點分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點,滿足:過點P分別作圓C1與圓C2的一條切線,切點分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點,滿足:過點P分別作圓C1與圓C2的一條切線,切點分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點,滿足:過點P分別作圓C1與圓C2的一條切線,切點分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>

在平面直角坐標(biāo)系xOy中,已知圓C1:(x-3)2+(y+2)2=4,圓C2:(x+m)2+(y+m+5)2=2m2+8m+10(m∈R,且m≠-3).
(1)設(shè)P為坐標(biāo)軸上的點,滿足:過點P分別作圓C1與圓C2的一條切線,切點分別為T1、T2,使得PT1=PT2,試求出所有滿足條件的點P的坐標(biāo);
(2)若斜率為正數(shù)的直線l平分圓C1,求證:直線l與圓C2總相交.

查看答案和解析>>


同步練習(xí)冊答案