解:(1)若a<9,根據(jù)題中所給表得: 2分 前兩個(gè)式子相減得b=,后兩個(gè)式子相減得b=2,相互矛盾.故a<9不可能. 4分 若9≤a<15,根據(jù)題中所給表得: 解得 8分 若15≤a<22,根據(jù)題中所給表得: 無解. 若a≥22,根據(jù)題中所給表得:無解. 綜合以上得. 10分 (x≤10) (x>10) (2)y= 12分 查看更多

 

題目列表(包括答案和解析)

(10分).已知集合A={x|a≤x≤a+3},B={x|x<-2或x>6}.

(1)若A∩B=Φ,求a的取值范圍; (2) 若A∪B=B,求a的取值范圍.

解:(1):                       (2):

查看答案和解析>>

解關(guān)于的不等式

【解析】本試題主要考查了含有參數(shù)的二次不等式的求解,

首先對(duì)于二次項(xiàng)系數(shù)a的情況分為三種情況來討論,

A=0,a>0,a<0,然后結(jié)合二次函數(shù)的根的情況和圖像與x軸的位置關(guān)系,得到不等式的解集。

解:①若a=0,則原不等式變?yōu)?2x+2<0即x>1

此時(shí)原不等式解集為;   

②若a>0,則ⅰ)時(shí),原不等式的解集為;

ⅱ)時(shí),原不等式的解集為;

  ⅲ)時(shí),原不等式的解集為。 

③若a<0,則原不等式變?yōu)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911034560884068/SYS201207091104230776185555_ST.files/image013.png">

    原不等式的解集為。

 

查看答案和解析>>

已知函數(shù)f(x)=alnx-x2+1.

(1)若曲線y=f(x)在x=1處的切線方程為4x-y+b=0,求實(shí)數(shù)a和b的值;

(2)若a<0,且對(duì)任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范圍.

【解析】第一問中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二問中,利用當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,

即f(x1)+x1≥f(x2)+x2,結(jié)合構(gòu)造函數(shù)和導(dǎo)數(shù)的知識(shí)來解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲線y=f(x)在x=1處的切線方程為y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)當(dāng)a<0時(shí),f′(x)<0,∴f(x)在(0,+∞)上是減函數(shù),

不妨設(shè)0<x1≤x2,則|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1,

∴|f(x1)-f(x2)|≥|x1-x2|等價(jià)于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2,

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是減函數(shù),

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0時(shí)恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范圍是

 

查看答案和解析>>

在解三角形中,已知A,ab,給出下列說法:

(1)若A≥90°,且ab,則此三角形不存在; 

(2)若A≥90°,則此三角形最多有一解;

(3)當(dāng)A<90°,a<b時(shí)三角形不一定存在;

(4)若A<90°,且a=bsinA,則此三角形為直角三角形,且B=90°;

(5)當(dāng)A<90°,且bsinAab時(shí),三角形有兩解。

其中正確說法的序號(hào)是                    

查看答案和解析>>

a<0,則關(guān)于x的不等式ax+1>0的解集是(    )

A     B      C      D

 

查看答案和解析>>


同步練習(xí)冊(cè)答案