題目列表(包括答案和解析)
已知、是兩條直線,、是兩個平面,給出下列命題:①若,,則;②若平面上有不共線的三點到平面的距離相等,則;③若、為異面直線,,,,,則.其中正確命題的個數(shù)( )
A.個 | B.個 | C.個 | D.個 |
A.個 | B.個 | C.個 | D.個 |
已知
α、β是兩個不重合的平面.①若平面
α⊥平面γ,平面β⊥平面γ,則平面α∥平面β;②若平面
α內(nèi)不共線的三個點到平面β的距離相等,則平面α∥平面β;③
a、b是平面α內(nèi)的兩條直線,且a∥β,b∥β,則平面α∥平面β;以上正確命題的個數(shù)為
[
]
A .0個 |
B .1個 |
C .2個 |
D .3個 |
[番茄花園1] 本題共有3個小題,第1小題滿分3分,第2小題滿分5分,第3小題滿分10分。
若實數(shù)、、滿足,則稱比遠離.
(1)若比1遠離0,求的取值范圍;
(2)對任意兩個不相等的正數(shù)、,證明:比遠離;
(3)已知函數(shù)的定義域.任取,等于和中遠離0的那個值.寫出函數(shù)的解析式,并指出它的基本性質(zhì)(結(jié)論不要求證明).
23本題共有3個小題,第1小題滿分3分,第2小題滿分6分,第3小題滿分9分.
已知橢圓的方程為,點P的坐標為(-a,b).
(1)若直角坐標平面上的點M、A(0,-b),B(a,0)滿足,求點的坐標;
(2)設(shè)直線交橢圓于、兩點,交直線于點.若,證明:為的中點;
(3)對于橢圓上的點Q(a cosθ,b sinθ)(0<θ<π),如果橢圓上存在不同的兩個交點、滿足,寫出求作點、的步驟,并求出使、存在的θ的取值范圍.
[番茄花園1]22.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com