題目列表(包括答案和解析)
(本題滿分14分)已知橢圓的右頂點(diǎn),過的焦點(diǎn)且垂直長軸的弦長為.
(I) 求橢圓的方程;
(II) 設(shè)點(diǎn)在拋物線上,在點(diǎn)處的切線與交于點(diǎn).當(dāng)線段的中點(diǎn)與的中點(diǎn)的橫坐標(biāo)相等時(shí),求的最小值.
(本小題滿分14分)
已知橢圓的中心在坐標(biāo)原點(diǎn),兩個(gè)焦點(diǎn)分別為,,點(diǎn)在橢圓 上,過點(diǎn)的直線與拋物線交于兩點(diǎn),拋物線在點(diǎn)處的切線分別為,且與交于點(diǎn).
(1) 求橢圓的方程;
(2) 是否存在滿足的點(diǎn)? 若存在,指出這樣的點(diǎn)有幾個(gè)(不必求出點(diǎn)的坐標(biāo)); 若不存在,說明理由.
(本小題滿分14分)已知橢圓的一個(gè)焦點(diǎn)與拋物線的焦點(diǎn)重合,P為橢圓與拋物線的一個(gè)公共點(diǎn),且|PF|=2,傾斜角為的直線過點(diǎn).
(1)求橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為,問拋物線上是否存在一點(diǎn),使得與關(guān)于直線對稱,若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由.
(本小題滿分14分)
(1)已知等差數(shù)列{an}的前n項(xiàng)和為Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),證明;= ;
(2)注意到(1)中Sn與n的函數(shù)關(guān)系,我們得到命題:設(shè)拋物線x2=2py(p>0)的圖像上有不同的四點(diǎn)A,B,C,D,若xA,xB,xC,xD分別是這四點(diǎn)的橫坐標(biāo),且xA+xB=xC+xD,則AB∥CD,判定這個(gè)命題的真假,并證明你的結(jié)論
(3)我們知道橢圓和拋物線都是圓錐曲線,根據(jù)(2)中的結(jié)論,對橢圓+ =1(a>b>0)提出一個(gè)有深度的結(jié)論,并證明之.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com